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Multithreading provides a 
popular mechanism for 

achieving concurrency, but 
managing that concurrency 

can daunt even experienced 
programmers. The authors 

offer a tutorial on using 
threads safely and effectively 

in an RPC-supported, 
distributed environment. 
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and BALAKRISHNAN DASARATHY 
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concurrency mechanism that is gaining a lot of attention and pop- 
ularity Iately is multithreading - the use of multiple threads or 
flows of control within a single program. The use of threads 
enables low system overhead because using multiple threads with- 
in a process reduces the number of context switches that the oper- 
ating system performs on the process. Context switching between 
two processes is a lot more expensive, in terms of host resources, 
than context switching between multiple threads within a process. 

reads, however, requires an application programmer to manage con- 
currency or synchronization explicitly. Traditionally, these issues have been the con- 
cern of system-program developers. We believe that in most application scenarios a 
disciplined use of threads can be easily learned and employed, and we show how this 
can be accomplished. 

We have successfully developed multithreaded applications using the Open 
Software Foundation’s Distributed Computing Environment. DCE threads are based 
on the evolving Posix standards for threads.’ This article provides an introduction to 
programming with threads for experienced software developers familiar tvith languages 
such as C. Although the focus of our work has been in the DCE arena, the guidelines 
we define here can be extended to other environments that support multithreading, 

0740.7459,96,$05.00 B 1996 IEEE JANUARY 1996 



www.manaraa.com

such as Sun Microsystem’s SunOS 5.3 
(Solaris) and Windows 95. 

DCE supports the remote-proce- 
dure-call’-’ communication-synchro- 
nization paradigm across address 
spaces and multithreading within an 
address space. The RPC paradigm, 
which is similar to the procedural-call 
paradigm within a single address 
space, can be easily mastered and thus 
provides a migration path for reengi- 
neering centralized systems to distrib- 
uted systems. Moreover, the RPC par- 
adigm, being synchronous, can lead to 
better application recovery than would 
asynchronous paradigms in the case of 
remote computation failure. 

One drawback of synchronous 
RPCs, however, is that an RPC call 
causes blocking when executed. 
Multithreading is introduced to 
address the blocking issues by allow- 
ing the programmer to create multi- 
ple threads within an address space 
that perform multiple operations in a 
concurrent paradigm. When one 
thread of a process is waiting on an 
RPC reply - or any input or output 
- other threads within the process 
can be doing useful tasks, which 
increases an application’s throughput. 
Thus, a threads-and-RPC combina- 
tion affords the best of both worlds: 
ease of use, failure recovery, and per- 
formance. 

Not all applications will benefit 
from multithreading. For example, 
performance of CPU-bound applica- 
tions tends to decrease when multi- 
threaded on a uniprocessor: the model 
is less efficient on CPU-bound 
processes because of the threads’ addi- 
tional context switching. However, on 
a multiprocessor threads scheduler 
that is supported by the operating sys- 
tem, the increase in true parallelism 
can make the multithreaded model 
more efficient. Michael Powell and 
Steve Kleiman give a more detailed 
analysis of uniprocessor versus multi- 
processor computing and user-level 
threads versus threads supported by 
the operating system.” 
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Computing Environment. DCE supports the RPC communication-synchronization 
paradigm amoss address spaces and multithreading within an address space. 

DCE 

DCE is a collection of services for 
the development, deployment, and 
use of transparent distributed systems 
using the client-server architecture. 
Enabling application-level interoper- 
ability and portability among hetero- 
geneous platforms through common 
application programming interfaces is 
the heart of DCE. It supports the 
remote-procedure-call synchronous- 
communication paradigm across 
address spaces and over various net- 
work protocols, with multithreading 
within an address space for concur- 
rency. DCE uses a directory service 
and name server to provide client- 
server location transparency. 
Directory services are provided within 
an administration domain, called a 
cell, and among cells using Domain 
Name Service and X.500. 

DCE security services are based on 
Kerberos, a security protocol and sys- 
tem developed as part of Project 
Athena at MIT. It provides a trust- 
worthy, shared-secret authentication 
system. Its DCE services include 
authentication of servers and clients, 
support for resource authorization by 
an application server in providing ser- 

vices to its clients, and various levels 
of message integrity and encryption 
- all at different cost levels. DCE 
contains two other distributed ser- 
vices: its Distributed File System pro- 
vides access to files across machines 
and its Distributed Time Service 
assists in synchronizing clocks. 

Architecturally, DCE lies between 
the applications and the operating sys- 
tems and network services. DCE client 
applications issue a request for service 
using DCE functions. DCE, in turn, 
uses the operating system and network 
services to communicate that request 
to a server and to communicate the 
results of the remote computation back 
to the client. Figure 1 shows a block 
diagram of DCE. For a more detailed 
overview of DCE, see the Open 
Software Foundation’s publications.‘%* 

THREADS 

The DCE multithreading service 
allows multiple, simultaneous control 
flows within a single process or address 
space. The main advantage of threads 
is increased throughput by more effi- 
cient use of system resources.’ 

Figure 2 shows the difference 
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Figure 2. Comparison of the single-threaded and multitheaded programmi7zg 
models. The multithreaded model has muLt$le stack-and-register pairs allocated to 
each thvead. 

between the single-threaded and mul- 
tithreaded programming models. Both 
have heap-, static-, code-, stack-, and 
register-memory allocations. The mul- 
tithreaded model, however, has multi- 
ple stack-and-register pairs allocated 
for each thread. This lets multiple 
threads have both thread-specific, 
stack-and-register data and shared, 
heap-and-static data within a single 
address space. The data allocated from 
heap behaves like a stack in that the 
local data of a procedure is allocated 
from the top of the heap when the pro- 
cedure is invoked and the data is 
released from the top of the heap when 
the procedure returns. The static data, 
on the other hand, persists until the 
return of a procedure. The code seg- 
ment is shared by all threads within the 
address space. 

By using threads in a client-server 
computation model, as supported by 
DCE, server applications can service 
multiple clients concurrently. DCE 
servers are multithreaded by default. A 
client can use threads to make multiple 
simultaneous requests to a server or to 
multiple servers. Each thread progress- 
es independently using its own stack- 
space and register resources, periodi- 
cally synchronizing with each other 
and sharing the heap- and static-data 
process resources as necessary. Some 
threads continue processing while 
other threads wait for services such as 
disk I/O or network-packet reception. 

The applicability of threads is not 
restricted to distributed systems. 
Consider a communications applica- 
tion that reads from and writes data to 
an asynchronous communications port 

n addition to performing other appli- 
:ation tasks. Because the reception of 
lata from the port is asynchronous, 
Lou cannot know when data will be 
received. In a single-threaded environ- 
nent, you would typically use interrupt 
srocessing - in which reception of 
it a a interrupts the application - or 
polling the port for data with timed- 
3ut read calls, to handle asynchronous 
input. However, both require multiple 
operating-system calls that are expen- 
sive in a shared-processing environ- 
ment. You could implement the appli- 
cation using two threads, one to 
receive asynchronous data and the sec- 
ond to execute other application opera- 
tions. The thread that reads from the 
port can continuously read data and 
pass it along to the other thread for 
processing. When no data is available 
to read, the thread will block until 
more data is received. In the mean- 
time, the other thread continues to 
execute other application tasks. For a 
general overview of threads, see 
Andrew Birrell’s An Introduction to 
Programming with Threads.L0 

Threads implementation. A thread imple- 
mentation can either be in user or ker- 
nel (system) space. Currently, many 
DCE thread implementations are done 
in user space. As threads become a basic 
unit for scheduling and resource alloca- 
tion by an operating system, this will 
change. For instance, Sun’s Solaris 
operating system supports kernel-level 
threads. In a user-space threads imple- 
mentation, threads management is done 
in user time and the operating system 
has no control of the threaded environ- 

, 

nent except to make resources available 
IO the entire process. The management 
3f threads within the process is analo- 
~0~s to the process management within 
m  operating system: scheduling and 
resource allocation take place, but at the 
user level. Also, like processes within an 
operating system, threads have process- 
ing states and scheduling policies associ- 
ated with them. 

Threads API. The DCE threads pro- 
vide a set of primitive function calls that 
serve as application programming inter- 
faces to create, administer, and synchro- 
nize threads within a single address 
space. These primitive operations can 
be classified into the following groups: 

+ Administration includes functions 
for threads creation, cancellation, pri- 
ority setting, stack size setting, and 
clean-up after thread termination. 
These functions let you tune attributes 
of a thread to meet specific require- 
ments. 

+ Synchronization lets multiple 
threads communicate with each other. 
Thread synchronization prevents race, 
deadlock, and priority-inversion condi- 
tions. 

4 Signal-handling catches and 
sends operating-system signals. These 
interfaces can be used in the traditional 
sense to communicate to other 
processes in a system or to create 
event-driven applications. 

+ Thread-specific data store lets a 
thread have its own version of a glo~bal 
data structure. 

To introduce the threads APIs used 
in this article’s examples, in the box 
that starts on page 84 we summarize 
the various APIs typically required to 
realize a threaded application. You may 
want to read this text first if you have 
little or no Posix threads experience. 

THREADED PROGRAMMING 

The examples that follow show 
when and how to use DCE threads. 
We adopted the sample code frag-’ 
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ments from systems developed using 
DCE. With each example, we include 
the rationale for choosing one imple- 

.bpaccess-thread0 I 

pthread~lock_global~npO: /* get global lock 
open-data-base (db-name); 
first-data-base-operationo; 

. . . . . 
last-data-base-operationo; 
close-data-base(db-name); 

pthread-unlock-global-np0: /* release global 3 

mentation techniaue o;er another. i __ 
These examples are ‘not optimized and, 
to enhance readability, may omit vari- 
able declarations, mutex and condition 
variable-initialization routines, and 
error checking. 

Figure 3. Example of coarse-grain locking. This code fi-agment contains a sequence 
of operations on a database. In this and subsequent$gur threads appear in italic. 

Synchronization granularity. A key aspect 
of threads programming is synchroniza- 
tion among threads for their proper 
interaction. Synchronization is required 
when a thread is about to enter a “criti- 
cal-processing region”; that is, when it 
needs to lock out other threads from 
changing a shared resource or wait for 
some predetermined event to happen. 

DCE threads have two synchroniza- 
tion object types: a mutex - short for 
mutual exclusion, and commonly 
referred to as a lock - and a condition 
variable. Mutexes ensure that the 
integrity of a shared resource is main- 
tained by serializing the thread-access 
and thread-update functions. 
Condition variables serve as a signaling 
mechanism between threads. You 
should use mutexes for short-term 
locking, such as serializing updates to a 
data item, and condition variables for 
long-term locking, such as waiting for 
an asynchronous event to occur. We 
make this generalization because a sys- 
tem’s underlying mutex functionality 
could be of the spin-lock type. A spin- 
lock mutex would constantly execute, 
spinning until it obtains a lock. This 
wastes system resources during rela- 
tively long waits. 

Threads synchronization, or lock- 
ing, ranges from fine to coarse. We 
define fine locking as having a locking 
mechanism for each shared resource; 
coarse locking has a single locking 
mechanism for several resources and 
for all threads within the process. 

Course synchronization. You need coarse 
synchronization during the execution 
of function and library calls that are not 
thread-safe. These calls require that all 
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#define LOCK(X) if (pthreabmutex-lock (&Xl == -1) { \ 
printf (“Error: Can't lock mutex\n"): \ 
exit (-1); 1 

#define UNLOCK(X) if (pthread-mutex_unlock C&X) == -1) 1 \ 
printf ("Error: Can't unlock mutex\n"): \ 
exit (-1); I 
. . . . . . . . . 

db-access-thread0 1 
pthreabmutex-t db_mutex; 

. . . . . . . . . . 
LOCK(db-mutex); /* lock database access */ 

open-data-base (db-name): 
first-data-base-operationo; 

. . . . . . . 
last-data-base-operationo: 
close-data-base: 

UNLOCK(db-mutex) ; I* unlock database access */ 

&r-e 4. Example offine synchronization. The global lock-unlock is replaced with 
local mutex lock-unlock known to all threads. 

related thread activity be suspended 
while the controlling thread continues 
processing. The code in Figure 3 shows 
coarse-grain locking for a sequence of 
operations on a database. 

The function calls to pthread-lock- 
global-np and pthread-unlock- global-np 
lock and unlock a single, process-wide 
mutex. In Figure 3 and the rest of the 
examples, calls to the threads’ API are 
highlighted. By introducing this type 
of locking in a DCE-based server, you 
can serialize database accesses within 
the server. Remember, DCE servers 
are multithreaded by default and 
process requests as they are received. 
This implementation has the advan- 
tage of being easy to program: the 
global lock and unlock functions 
require the addition of only two lines 
of code around the critical region. 
The drawback of using the global lock 
is that all other threads, including 
nondatabase-related threads, that use 
the global lock-unlock are not allowed 
to run during database access, thus 
reducing concurrency in the process. 

Fine synchronization. The use of the 
global lock in the previous example was 
convenient in development terms, but 
not efficient. A fine locking mechanism 
can be established to make this code 
more efficient. This involves replacing 
the global lock-unlock with a local 
mutex lock-unlock known to all 
threads that access the database. This 
lets all database-related threads serial- 
ize access while letting other threads 
run. In Figure 4, the variable db-mutex 
is associated with the database db-name. 
The pthread-mutex_lock function call 
returns immediately after locking the 
mutex, if the mutex is available, or 
blocks until a lock can be obtained. 
The pthread-mutex-lock and pthread- 
mutex-unlock functions return a -1 if a 
system or programming error occurs. 

lnfermediate synchronization. You can use 
intermediate levels of synchronization 
to let one mutex protect multiple 
resources. You would do this to simpli- 
fy application code while maintaining 
correct semantic processing. For exam- 
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ple, a data structure or data object may i of the variables must firs; lock the i ming complexity is reduced as well 
consist of n variables. In intermediate i mutex before making any reads or ! because only one mutex is used instead 
synchronization, you associate just one : writes on the object. This preserves i ofn mutexes. 
mutex to provide access to the strut- i data integrity because only one thread i Intermediate synchronization 
ture. All threads assigned to access any i can lock the mutex at a time; program- ! reduces the code’s length and complex- 

CDRE APIS FOR DCE THREADS 
,.u “3 ‘, ,’ 

‘l‘he format of all Posix- I:cxcs must be ir,itiaiizcd es are deleted 71sing jxhre& t&C same conditioir varia.blr 
ch-eat1 AITS is ptllrcacl~ before they can bc used by mutex-cfcstro~. ~2nd murm pair. ,.I : ‘ ,’ 1, 
col$xl~. <oI)c.raLio11>, in which XIV tlmad. You do this with . l plllrc~d~ccrlIcl:~tl.!nr::l,~~~lic ,’ 

4)ject> Glil l)e all i tem such the pthread-rmltex.. init func- Condition variables. Sendirq. is hrur-l&m~llg idenCic:B! to 
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IlcJnpor’“blc. rx::lK tl1reads A  mutcx can be in either a variables. The concc~ts of to the calling pSoccs’. :l/lls, 
arc I-mcd on l%six 1003 .iFa locket1 or unlocked state and con&ion variabics az2d 
I’)rali -4 srzmdards.’ 13ecause 

tlur;i~km of rhe rwit pw-id is‘ 
is locked or unlocked by call- mutexes are similar in r;anll-e spccifiecl as an ahdolui:c: dRLi:* 

the I’osix document is wok- ing Ihe pchr-cati-lock or but are different in practice. and timi: an.rl iS-hdl~ cm’ 
ing: the IX.F, thrcadq are not ph cad-unlock functions .Mutexcs arc good for short- 
colrtpatil)le wilh the currcIIt respcctivcly. Each of these lived locking and unlocking 

stn~:t~cl using the pthrear~- ‘, 1 

or final w-sion of the Posix 
get-expirkon-np h.qcti.oh. 

ftimctiori calls requires a such as variable increment- Tlicsc functions must be 
thrc:ills standard. To masi- pointer to the mutex to he ing and tlecrernenting. Carp called frown within a, 10oj) 
mizc applicatioil poi-tahilily, lo&cd or unlocked. The se- dition variables should be tlJat WSLS any pldk:,~,, be- 
\Vc i.tlc:iitif~ some iiIcoirq)ati- mantics of the pthrcad- used for longer term condi- b72 aliowi ng the thrrcad yr) 
IMi L!; i~sucs bclwecn the ;I:utex-trylcck &n&on calI is Conal locking operations such 
I’osix: awl t)CIf-~, threads. 

conti1luc. ‘.l‘his is ni~32ssaq~ 
sitni:iar to the pthreatl- mutex- as “rqcnd thread processing bccausc the Posix threads 

Ne5.r threat:ls arc created lock fiinction call except that until variatde couiitcr is eq~l ‘sp&ificaticm lets the concli- 
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may ilot rcn~rn More the attributes assibmed to each with condition variables 
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tc(:r until 111t threads packzgc cursive. doclced stntc for other 
wxxl conhwns t-o Ihe Posix 

rimex is once again Ioclrcd 
Mutexes mist he d&ted thr&s to lock. and the coiWol is i.ctmrnrcl 

stu-dirtl. ‘T‘hc only exception hm t!be rmstimc environ- ‘Y’here are two &II-cad 
ro this ~ec~or~~l-ricJ.Jdati(jn mcnt when they are 110 

to the calling ~11ncti0n. 
functions that a thread an 
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.A ~.hE!:ld c;:lJl. .llOLi fc; OthCJ: 

~111 1-o block ~rntil a condit.ion 
threads tlwr reql~irc larger 

threads lhnt any prctlic;~~c.s 
pea-m. Iicrnoval of ~mnCedet1 is rais;ed by another thread: al-c I rue in one (II’ two bwys: 

stilcl~ sizl: lhn tl1c dclFiLllT. mutexcs rct~lrris 1 Jl -inor-,y to 
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l pthrcatl~cond _xvair waits * p1hrenc.l c~~nd~sign;~l 
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Thread synchronization. M W  oth- threads to 11s~:. Mutex- by smother thread thaw &arcs tlircnd that is w;,iljy 077 2 

84 JANUARY1 996 



www.manaraa.com

ity. Fine synchronization would i in the structure must wait while anoth- i level of parallelism in the application. 
require a mutex for each variable in the i er thread updates a different variable. 
structure. The disadvantage of inter- i 

i You should use high degrees of syn- 
In general, the level of synchro- chronization when the probability of 

mediate synchronization is that a i nization - coarse, intermediate, or 
! 
; 

thread assigned to update one variable i fine - should match the expected ; 
parallelism among threads is high. 
You should use decreasing levels of 

condition varialk. All other St~l~ltlil~d specify that a state information on how to Jnanagxmcnt fimctions mark 
threads that are waiting on pthreatl--join call M-ill tlo 311 lJroCess cancellation requests. the target &read for c~ncelia- 
the Condition rariahle remain implicit pthread-detach on the ‘I’his informat.ion is classiticd tion and terminate the thread 
blocked. slJeCifiCd thrcacl in addition into two Categories: at the next cancellation point. 

* ~~tl~r.e~~cl..cond~l~rc,atlcast 1’0 retlirning the exit ~mcle. + ll7tcmlpt ~nahlc. ‘1% is A  cancellation point is reached 
wakes all the threads waiting ‘I’his niwis that only one infmJmion determines if the when a thread calls either the 
on a Conclition I-ariahlc. ‘I’hc tlircad Can ioiii to a terniinat- thread should prmxss or I’thrcaLl-setas~~iccancel, 
first thread to cxccutc is Ccl thread. ‘I’herrfore, you ignore cancellation reipwts. 

C&xllation is enablecl ancl 
I)tllrcati_testcancel, pthread- 

cleterminecl hy the chreacls sh0i~ltl avoid n~uhil.Jle joins clela)~ .np, pt’hrwd-join, pthreacl- 
schrcluler. 1.0 the same ~hreatl. clisabled by callinp the cm&wit, or ptlircati- cowl- 

Two 0Lher Ccm~plenient- ‘1%~ ptlircail-chit function pLhrcntl_sctcancel function tirncciuait function calls. 
ing fiinction calls can bc used Call tCrniinalw processing of with the C+\NCI<I,. ON/<:;\S- Threads in the asynchro- 
to sy&w~ixC threads: the Calling thread. ‘I’his fimc- (XI..-OI~I~ parameter. (XX- now cancel Jnode are ternii- 
pthred join and p~hrc”d wit. tion causes the thread to stqJ (Xl., IXK is the deMt nated immediately upon 
The phrcatl-joirl tames the pwessing and stores the exit Miwior for all ihrcads. receipt of a ranccllation 
calling thread to return the inforrnntion for other threads l /lrtwqt [ype. This rcqucst. Rccause terininalion 
exit code of a specified to inspect. ‘1%~ nllocatcxl stack information dctcrtnincs IWM~ is immediate, the thread 
thread in the tcrininatetl slJaCe remains in place until a thread prowsscs cancclla- should not hc IJCrfcJnning 
state. ‘l’his function ~ausrs pthrcatl-detach is Lxllctl. This tion recpicsb w1iCn (:,1X- any opxiticm that w~i~lcl 
the Calling l:hreRd to fiinction also polx IwiLling CM, ON is CnalJleci. \.ThCn result in an undesired state 

l Keturn inirr~ccliately if cleanup routines. the inl.errulJt cnahlc niocle is when it is canr:cled. I:cJr 
the t-hrcad slxcifetl is in the ~S.Al31 J-OS. threads c;iii 1x2 exam& the results are non- 
terminated state. Thread cancellation. The canceled cithcr wnchronous- dcterrninistic if a thread is 

0 Hlock lhc Calling thread DCE thread-ca~~ccll:~tion 1~. which is the d&iL,lt, or catlcelctl during 2 GIlI t0 tlK 
until the slxCifiCd thread tcr- timction lc’ts one thread mark asynchronousI!. A  thrcacl Can tTl;llloC hnction call. Results 
nlinatcs. itself or anotlicr t-hreacl for allow or clisallow as\whrcJ- of this function-call tylJC are 

* Fail when the specified tcunination. ‘71~e target nous Cancels 1)~ calling the not known lxcause the Can- 
thread has been dCt;ldJd. thread is ;tllo\vctl to queue ~‘lllrc:ld~scl:Is~~n~c;lnccl the- cclecl thread has no way of 
This is Iwause detachctl cariCellari0~~ rcqucs~s ancl exe- tion bvith t-lie (::\N(:I~:I. OK indicating that the call cithcr 
threads have had their stack Cute predetrrininrd cleanup or (:.\S(:I+X. .OFF I’;wanirt-er. failed or sucreedccl. 
spi~x rcturncd 1.0 the prc~c~w. rolltincs Ix43rc I-crrninating. .1 Lhrratl is in s! nchronous ‘I’hcrcfcm, threads sl10u1rl 

You should Imou- that it is (Cancellation is controlled cancel motk whcncver the not- he asp-nchronousl~ cm- 

likely that the runtimc by the threads interrupt-cori- :~s~~~~Chronous cancelalJilit~~ is . c&!Cl dlCJ1 they MY! Xlpir- 

semiitics of this fimctioii trol functions. Threads can- turned off and the Cancel ing, holding, or updating 
will Chanpc in the final vcr- cellation rcclwsls are prwxs- mode is C ZS(:EL-Oh. sharctl-data sLriJcturctl 
sion of the Posit stxndard. scd according 10 dw thrcatis ‘l’lirc:id caidlation re- object-s or nhcu tliq we 

<~urrent:lt;, il pthrearl..join call intwrulJtibiIity state. M ’hen 
LO a t~r111i11,t-ed &rcad cnablod, catxcllatiol~5 ta ic 1 

quests are n~acle I)!: calling releasing system rcsourccs. 
the ~~~l~~.‘~~~‘I_~::~nccl funrti<m 

returns the exit Code of the place at either interrupt-ion with the thread icleiitificr of REFERENCE 
spcciiiecl thread anti more points in the thrd or when t-he thread to cancel. VC’hcn 2 I 1‘1’11%111~ Illv~wi/n;,,/i,,- l’01?‘dh~ opw 

than mc threacl is allowed to a thread is asynchronously cancellation request is issuctl ,r/;q .\‘)31PI/ci. I'/ (IO i.41. lhfr 4; 

ll~,l-:l~, (3 ‘I‘ccl71~ic:1I (:rmAilwc 
join to a terminatccl thread. 
Sewer versions of the Posis 
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1 typedef struct C/* struct is a general mechanism to pass */ 
2 handle-t binding-handle; /* several parameters to a 

newly *I 
31 thread-args-: I* created thread*/ 
4 int ctr; I* counter & Number of running threads '/ 
5 pthread-mutex_t sync : /' mutex to update structure 

members */ 
6 pthreabcond-tsync-cv: /* CV to signal boss thread */ 
7 main0 { 
8 thread-args t-arg [MAX-THREADS]; I* array 0f structures */ 
9 pthreadpt t-id [MAX-THREADS]; /* array of thread ids 'f 

10 I* get server binding info */ 
11 LOCK(&sync):/* first lock the mutex for the wait call */ 
12 for ( ctr = 0; ctr < N; ctr++ )I/*ctr is shared by all 

threads*/ 
13 t-arg[ctr].binding_handle = servers[ctr]; 
14 t-arg[ctrl.running = &ctr; 
15 pthread-create(&t-idjctr]. pthread-attr-default, 
16 RPC-FUNCTION, At-argtctr]); 
17 3 
18 while( ctr != 0) /* wait for all threads to stop */ 
19 pthread~cond-wait(&sync_cv, &sync); 
20 UNLOCK(&sync); 

. . I* remainder of application code *I 
21 RPC-FUNCTION ( arg ) . 
22 thread-args *arg; { 
23 . . . . /* make RPC call and other operations *I 
24 LOCK(&sync): I* prevent other threads from decrementing *I 
25 ctr -= 1; I* decrement running threads count *I 
26 if(ctr == 0) I* is this the last thread 'I 
27 pthread-cond-signal (&sync-cv); I* wake up main thread*/ 
28 UNLOCK(&sync) ;/* let other worker threads run */ 
29 pthread-exit(O); /* exit and terminate thread *I 
30 

Figwe F. Example of the synchronous boss/worker model. In this code fragment, 
boss tbhvead creates n worker threads, each ofwhich will execute an RPC call to i 
respective semer. The worker thread that completes the last RX’ signals a conditic 
variable to infomn the boss thread that work is complete. 

typedef struct I 
handle-t binding-handle; I* binding handle to server *I 

I thread-args; 
main0 I 

thread-args t-arg [MAX-THREADS]; I' array of structures *I 
pthread-t t-id [MAX-THREADS] ; /* array of thread ids *I 

. . 
for( ctr = 0 ; ctr < N ; ctr++ ) { /* create N threads *I 

t-arg[ctr].binding-handle = servers[ctr]: 
pthread-create (ht-id[ctr]. pthread~attr-default, 

RPC-FUNCTION, &t-arg[ctr]); 
3 
for( ctr = 0 ; ctr < N; ctr++) I 

pthread-join ( t-idlctr] ): I* join with thread *I 
3 

RPC-FUNCTIKi(' arg ) 
thread-args *arg; C 

. . I* make RPC call and other operations *I 
pthread-exit(O): 

1 

ts ; 
,n j 

- 
Figure 6. Alternative method ofbosslworker thread synchronization. This approach 
simplifies the program by Yeducing the number of lines of code needed to synchronize 
the thveads. 

synchronization as the probability of ! Simultaneous multiple threads and RPCs. 
parallelism within the process decreas- i Threads can be used by applications 
es. Finally, you must evaluate design ! to execute RPCs in parallel even with 
trade-offs between efficiency and code i one CPU: one thread can continue 
complexity on a case-by-case basis. : processing while other threads are 

blocked waiting for the synchronous 
RPC to complete. Multiple RPCs and 
I/OS can also be issued using synchro- 
nous I/O multiplexing functions such 
as the select function call. However, 
this solution requires that the applica- 
tion manage the synchronous reads 
and writes and the polling of file 
descriptors. 

Synchronous boss/worker model. A typical 
computation model for the use of 
multithreading is the boss/worker 
model, in which a boss thread assigns 
tasks to n worker threads. The boss 
may wait for a reply from one, some, 
or all n workers before proceeding. 
We call the first scenario described 
below synchronous because the boss 
thread waits for all n workers to com- 
plete before continuing. 

To comply with the synchroniza- 
tion rules outlined earlier, we use con- 
dition variables in this example - 
waiting for the completion of multiple 
RPCs could take a relatively long 
time. 

In the code fragment shown in 
Figure 5, a boss thread creates n 
worker threads, each of which will 
execute an RPC call to its respective 
server. The worker thread that com- 
pletes the last RPC signals a condition 
variable to inform the boss thread that 
work is complete. Figure 4 shows the 
definitions for the LOCK and 
UNLOCK macros. The list of binding 
handles for servers is contained in the 
array servers: The loop index variable 
CC= is known to all related threads 
because it is a global variable. 

This code shows several key points. 
The function RPC-FUNCTION exe- 
cutes simultaneously as n separate 
threads. Figure 2 shows that each 
instance of local variables within each 
thread exists on a separate stack space. 
The code segment for the function is 
shared among threads. This allows 
multiple simultaneous execution of 
the same function in the same address 
space with different arguments. When 
one thread blocks on an RPC call, or 
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is preempted by the threads scheduler, 
another thread-is assigned CPU time. 

Each thread requires its own sepa- 
rate arguments structure as declared 
on line 8. Multiple structures are 
required because the arguments for 
each thread must persist after the 
pthread-create call. The use of multiple 
structures would not be necessary in a 
single-threaded model. 

The RPC-FUNCTION protects both 
the running counter decrement in line 
25 and the test for zero in line 26. This 
avoids a race condition between one 
thread setting the variable to zero and 
another thread reading a zero value, or 
two threads reading the same value and 
decrementing one from the same value, 
such as losing an update. The order of 
lock, decrement, test, and unlock guar- 
antees that the thread that set the vari- 
able to zero reads the value as zero. 

The program uses the pthread-cond- 
wait call on line 19 and the predicate 
test of ctr != o to determine when all 
threads have completed. Predicate tests 
are required when using the 
pthread-cond-wait and the pthread-cond- 
timedwait routines because the Posix 
specification does not specify rigid 
return criteria for these functions: 
Either of these calls can return at any 
time, not just when the application sig- 
nals it to return. The pthread-cond-wait 
and pthread-cond-timedwait calls unlock 
the associated mutex before waiting for 
the respective condition to be raised. 
When the condition is raised, the 
mutex is once again locked and control 
is returned to the calling function. 

This example uses a medium-level 
synchronization because the mutex 
sync used for the condition variable 
sync-cv is also used to serialize access 
to the variable CRY. 

Figure 6 shows that you could also 
achieve synchronization by using the 
pthread-join routine to wait for each 
thread to complete. This approach 
simplifies the program by reducing 
the number of lines of code needed to 
synchronize the threads. We provided 
the previous example to show the 
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1 struct ARGS I 
2 handle-t binding-handle; 
31 ~-~~~[MAx-THREADSI; 
4 LOCK(done); 
5 started = 0: 
6 for( ctr = 0; ctr < N; ctr++ ) ( 
7 t-arg[ctr].binding-handle = servers[ctr]; 
8 pthread-create(&t-idtctrl, pthread-attr-default. 
9 RPC~FUNCTION, &t-argfctr]); 

10 I 
11 started++: /* tell threads all threads started */ 
12 pthreaddconddbroadcast( &start-cv );/* tell threads to start 
*I 
13 while ( first-server == NULL ) 
14 pthread-cond-wait( &done-cv, &done ); 
15 UNLOCK( done ); 
16 for (ctr = 0: ctr < N: ctr++ ) { /* clean up threads 

space *I 
17 pthread-cancel( t-id[ctrl 1: /* kill the threads */ 
18 pthread-detach( &t_id[ctrl 1: /* clean up space */ 
19 1 
20 . . . . /* remainder of application */ 
21 RPC-FUNCTION ( arg ) 
22 struct ARGS arg; 
23 1 
24 if( started != 1 ) I /* wait until all threads created */ 
25 LOCK( start ); 
26 while( started != 1 ) 
27 pthread-cond-wait( &start-cv, &start 1: 
28 UNLOCK( start ); 
29 I 
30 pthread-setasynccancel( CANCELLON ): 
31 rpc-mgmt-is-server_listening( arg->binding-handle, &status); 
32 LOCK(done); I* prevent other threads from 

changing first-server variable */ 
33 if ((status == error-status-ok) && (first-server == NULL)){ 
34 first-server = arg->binding-handle: 
35 pthread-cond-signal( &done-cv 1; 
36 1 
37 UNLOCK(done); 
38 pthreabexit(0); 
39 1 

Figure 7. Example of the asynchronous boss/worker model. The code selects an 
active seruey f jOm a list of potential servem in a DCE-based application by meating 
a thread fey each potential server that sends a call to each respective semev: Binding 
information fi-om the fiYst semen that responds is passed back to the application. 

interrelationships between the various 
threads’ APIs. 

Asynchronous boss/worker model. Some 
applications will have requirements 
similar to those shown in the previous 
section, except that the boss thread 
only waits until the first RPC com- 
pletes before resuming execution. For 
example, a client can have a set of ser- 
vice providers, generally of the read- 
only type, that supply an identical ser- 
vice such as replicated directory. In 
such a case, a client can locate an active 
server by either polling each, one at a 
time, using the single-threaded model, 
or by polling all the servers at almost 
the same time using the multithreaded 
model. The search in the multithread- 
ed model is called off as soon as a serv- 
er responds. 

Figure 7 shows a code fragment that 

selects an active server from a list of 
potential servers in a DCE-based 
application. It does this by creating a 
thread for each potential server that 
sends an rpc-mgmt_is-server-listening call 
to each respective server. Binding 
information from the server that 
responds first is passed back to the 
application using the first-server global 
variable. The remaining RPC threads 
are canceled. The servers to contact 
are contained in the array servers. This 
code illustrates several important 
points: 

l On line 30, asynchronous cdncel- 
lation of each worker thread is enabled 
so that each thread can be canceled by 
the boss thread on line 17 after the first 
RPC returns. 

+ On line 27, asynchronous cancel- 
lation is enabled in each worker thread 
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struct THREAD-ARGS { /* global definition */ 
int mode; /* synchronous/asynchronous flag *! 
pthread~mutex-t sync;/* mutex to prevent race condition */ 

pthread-condLt sync-cv: /* condition variable */ 
1: 
BossFunction I 
struct THREAD-ARGS *p; /* pointer to the thread arguments*/ 
struct timespec add, limit: I* structures to track time */ 
p = (struct THREAD-ARGS *) malloc(sizeof(THREADARGS)): 
p->mode = 0; I* initialize to synchronous mode */ 
LOCK(h(p->sync)); I* Lock the mutex */ 
pthread_create(&thread_id, pthread-attr-default. 

DoStudy, p); I* create new thread*/ 
add.tvpsec = 2: I* set number of seconds to wait */ 
add.tv-nsec = O;/* and zero nanoseconds *I 
pthread-get-expiration_np(&add,&limit): /*expiration time *I 

I* sync_cv is a globally declared condition variable */ 
if (pthread-cond-timedwait(&(p->sync-cv).&(p->sync) .&limit)!= 0 ) 

p->mode = 1; I* RPC is now asynchronous ‘/ 
UNLOCK(&(p->sync)); 
return 1: 

,,id DoStudy( struct THREADARGS *p) 1 
. /* make RPC call and other operations*/ 

LOCK(&(p->sync 1): 
if ( p->mode == 1 1 I I* did RPC exceed time limit */ 

. I* do Asynchronous processing: e.g., report RPC results 
in a separate widget *I 

3 
else I 

. . I* do Synchronous processing *I 
pthread-cond-signal( &sync-cv 1: I* wake boss thread*/ 

UNLOCKS &(p->sync) 1; 
pthread-exit(O); 
? 

Figzye 8. Example of &nulating asynchronous RPC talk From the application’s 
perspective, the RPC appears synchronous when it completes in 2 seconds and asyn- 
chronow when it exceeds 2 seconds. 

thread pevfbvms all the X-Yelated processing and that the remaining theads, using 
the inteTfpTocess-communications pipes mechanisnz, cornrnunicate to the X event-loop 
manager manager as if they we?re separate Processes.. as if they we?re separate Processes.. 

#define READ 0 I* Label for the read end of the pipe 
#define WRITE 1 I* Label for the write end of the pipe 

int gui-pipe[Zl; I* declare pipe variable ‘I 
I* process initialization 

pipei'ill-pipe ); I* 
*I 

create pipe *i 
XtAddInput(gui_pipe[READ]. XtInputReadMask. CB, NULL); 

. . I* more main0 thread processing 
XtMainLoop(); I* start the event loop 1; 
exit(O); I* exit main loop of X *I 
3 
I* This thread will be called by the application and will run *I 
I* with its own stack space. When the Get-remote-data returns *I 
I* a message will be passed to the event loop manager which */ 
I* in turn calls the call back function to perform the 
/* X related functions that are not thread-safe. 1; 
Send-RPC-Thread0 { /* thread that sends RPC 

. . . . . . . /* init code \xll 1; 
Get-remote-data(); I* send the RPC call */ 
write( gui-pipe[WRITEl,"done", 4): I* write string to pipe 'I 
pthread-exit(O): /* exit the thread *I 

1 I* end of the Boss thread 
I* the call back function (CB) will be called by the event 1; 
I* manager and executed as part of the main0 thread *I 
CB( W, c-data, cb-data ) [ I* CB routine to process worker info*/ 

I* declare variables, *I 
read( gui-pipe[READl, some-line, 4); I* remove data from pipe *I 

. I* Perform X related functions as main0 thread *I 
1 

after the pthread-cond-wait call. This 
prevents the deadlock condition of 
canceling a thread that is holding a 
shared resource; in this case, the shared 
resource is the start mutex. 

+ The first-server variable updates 
once and only once because of the ini- 
tial-condition test done on line 33. 
Without the initial-condition test, a 
race condition would exist: between 
other worker threads that want to 
update the variable and the boss 
thread, which wants to terminate the 
search. Also, without the test another 
worker thread can update the first-server 
variable before the boss thread gets a 
chance to terminate the remaining 
active threads. 

+ The pthread-join function cannot 
be used because it is not known which 
thread will complete first. 

+ The code fragment in Figure 7 
can easily be modified if the boss 
thread must wait for completion of the 
first K of n threads or the first K 6f n 
threads that return with some “suc- 
cess” replies. In Figure 7, K = 1. 

Simulating asynchronous RPC calls. The main 
form of communication among 
processes in DCE is synchronous 
RPC: the calling party waits until it 
gets a reply from the called party or 
until the RPC runtime returns a com- 
munication failure. Asynchronous 
RPCs can be simulated using threads 
and timed condition waits. An asyn- 
chronous RPC facilitates a calling 
process to wait for a reply only for a 
specific amount of time. If no reply is 
received during that time, the calling 
process proceeds with its execution. It 
has the option of either receiving the 
reply in background mode or ignoring 
the reply. 

For example, consider an applica- 
tion with a graphical user interface. 
We want the GUI to have a maximum 
blocking time of 2 seconds. The appli- 
cation’s RPC-round-trip time, the time 
from the send to the receive, ranges 
from 500 milliseconds to 4 seconds. To 
meet the blocking requirement, a boss 
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thread creates a worker thread to make 
the RPC call. In this case, the boss 
thread is the main thread of the GUI. 
The boss thread can use the pthread- 
cond-timedwait either to wait for the 
RPC to complete or for the 2-second 
wait to expire. In either case, the GUI 
does not block for more than 2 sec- 
onds. Figure 8 shows that, from the 
application’s perspective, the RPC 
appears synchronous when it com- 
pletes within 2 seconds and asynchro- 
nous when it exceeds 2 seconds. 

For readability, we omit the predi- 
cate test required around the pthread- 
cond-timedwait and the initialization of 
the mutex and condition variables. 

The arguments to the worker thread 
must be allocated from the heap and 
not from the stack. This is necessary 
because automatic variables declared in 
the boss thread would be invalid in the 
worker thread once the boss times-out 
and returns to its calling function. 

INTEGRATING THREADS 

As of X11, Release 5, X-based pro- 
grams are not thread-safe. However, 
you can take steps to let multiple con- 
trol flows exist in a process that is not 
thread-safe. You can do this by making 
sure that only one thread, usually the 
main thread, performs all the X-related 
processing and that the remaining 
threads, using the interprocess-com- 
munications pipes mechanism, com- 
municate to the X event-loop manager 
as if they were separate processes. 

Figure 9 shows a code snip that 
accomplishes this. All X-related opera- 
tions are performed as part of the main 
thread and the RPC call is issued from 
a separate thread. The RPC thread and 
the main thread are connected with a 
unidirectional IPC pipe. The read end 
of the pipe is connected to the event- 
loop manager using the XtAddInput 
function call and the write end of the 
pipe is recognized by the RPC thread 
because it is a global variable. When 
the RPC is issued, the thread sending 
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server~thread(client~input. server-reply) 
char *client-input. *server-reply; [ 

int fd[Zl, n; 
socketpair(AF-UNIX. 
SOCK-STREAM, 0, fd); 
if(fork()) I /* parent */ 

close( fd[ll); 
write( fd[O]. client-input, strlen(client-input)); 
n = read (fd[Ol, server-reply. MAXLINE); 
server~reply[nl = '\O': /* null terminate string 

*I 
return: 

1 
else { /* child */ 

close(fd LOI): 
if (fd[l] != STDIN-FILENO) 

dupZ(fd [Il. STDINPFILENO); 
if (fd[l] != STDOUT-FILENO) 

dupZ(fd [II, STDOUT-FILENO); 
execlp("PROGRAMNAME". "PROGRAM-NAME",  NULL): 

I 
I 

@u-e 10. Example of porting an existing application to DCE. The code is used by 
the semen thread to create a separate address space that runs the nonreentrant sem- 
ev code. A biderictionalpipe does the input and output of the new process. 

the call will block and the main thread 
can continue to accept user input. 
When the RPC completes, a string of 
characters is written to the pipe. The 
writing of this data will cause the X- 
event-loop manager to call the call- 
back routine specified during the 
XtAddInput function call. This call-back 
routine performs the application oper- 
ations on the main thread in a thread- 
safe fashion. 

Porting existing applications to DCE. 
Often, we must convert existing appli- 
cations to DCE. The introduction of 
parallelism increases the complexity of 
the port because most applications are 
written in the single-threaded para- 
digm. To be thread-safe, the server 
code must be rewritten to be re- 
entrant. This rewrite converts global 
and static variables to a local scope and 
inserts locking and synchronization 
steps where necessary to protect shared 
data. Usually the client code will not 
change much because of the client’s 
generally low degree of parallelism. 

The costs of converting a server 

program to support concurrency 
increase with its size and complexity. 
Also, many third-party products, such 
as database-management and GUI 
products, do not support concurrent 
processing. Therefore, you must sepa- 
rate the processes that are not thread- 
safe from those that are. You do this by 
having the server thread execute a fork 
and exec to create a new address space 
to execute the non-reentrant program. 
Communications between the new 
process and the server thread can be 
done using any interprocess-communi- 
cations facilities available to the appli- 
cation. 

Figure 10 shows the code used by 
the server thread to create a separate 
address space that runs the nonreen- 
trant server code. A bidirectional pipe 
does the input and output to the new 
process. The parent process writes the 
data to the pipe and then reads the 
response from the pipe. The child 
process reads and writes data using 
stdin and stdout. 

-This implementation suffers from 
the disadvantage that a separate 
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process is created for each client 
request. However, you must weigh the 
additional use of system resources 
against the costs of converting a non- 
reentrant program to be thread-safe. 

large data structures. A thread’s stack 
space can quickly be used up by 
declaring large automatic data struc- 
tures or arrays in a thread. 
Diminished stack space can cause the 
thread to exceed its allocated stack 
and cause undesirable results. To 
reduce stack-space problems, memory 
allocations for large objects such as 
data structures and arrays should be 
taken from the heap. This decreases 
the chances of a thread running out of 
stack space. 

The heap can also run out of space 
when there is either too much demand 
for space or the memory is misman- 
aged. However, this situation can be 
easily detected and gracefully managed 
by the application. The same cannot 
be said for a thread running out of 
stack space because a segmentation 
violation signal is generated and the 
program either terminates or the sig- 

nal manager has no indication of 
&ich thread ran out of stack space. 

urrently, the absence of debug- 
gers for threaded programs 

poses a major problem when writing 
3istributed applications. In the absence 
3f a commercially supported multi- 
threaded debugger, we offer some 
practical advice on developing client- 
server-based distributed applications: 

+ First, develop the interface speci- 
Fication. 

+ Test and debug the server and 
client as a single-threaded, single- 
address-space program. The server is a 
subroutine and the client is a main pro- 
gram. 

+ Modify this stand-alone program 
as a single-threaded server program fol 
all critical regions, using pthread-lock_ 
global-np and pthread-unlock- global_nF 
constructs and a single-threaded clienl 
program. Test them as client and serv- 
er by linking with IDL compiler-gen- 
erated stubs and header files. 

+ Multithread the server and ther 
the client, preferably in that order. 

Breaking the development intc 
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these steps facilitates the principle of 
separation of concerns. Specifically, 
within an address space program-logic 
concerns are isolated from distribution 
concerns, which in turn are dealt with 
separately from concurrency issues. + 
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