feature

ultlthreadmg
rograms:

Multithreading provides @
popular mechanism for
achieving concurrency, but
managing that concurrency
can daunt even experienced
programmers. The authors
offer a tutorial on using
threads safely and effectively
in an RPCsupported,
distributed environment.

DAVID E. RUDDOCK
and BALAKRISHNAN DASARATHY
Bellcore

concurrency mechanism that is gaining a lot of attention and pop-
ularity lately is multithreading — the use of multiple threads or
flows of control within a single program. The use of threads
enables low system overhead because using multiple threads with-
in a process reduces the number of context switches that the oper-
ating system performs on the process. Context switching between
two processes is a lot more expensive, in terms of host resources,’
than context sw1t<:h1ng between multiple threads within a process.
The use of threads, however, requires an application programmer to manage con-
currency or synchromzatlon explicitly. Traditionally, these issues have been the con-
cern of system-program developers. We believe that in most application scenarios a
disciplined use of threads can be easily learned and employed, and we show how this
can be accomplished. '
We have successfully developed multithreaded applications using the Open
Software Foundation’s Distributed Computing Environment. DCE threads are based
on the evolvmg Posix standards for threads.' This article provides an introduction to
programming with threads for experienced software developers familiar with languages
such as C. Although the focus of our work has been in the DCE arena, the guidelines
we define here can be extended to other environments that support multithreading,

0740-7459/96/$05.00 © 1996 IEEE JANUARY 1996

such as Sun Microsystem’s SunOS 5.3
(Solaris) and Windows 95.

DCE supports the remote-proce-
dure-call** communication-synchro-
nization paradigm across address
spaces and multithreading within an
address space. The RPC paradigm,
which is similar to the procedural-call
paradigm within a single address
space, can be easily mastered and thus
provides a migration path for reengi-
neering centralized systems to distrib-
uted systems. Moreover, the RPC par-
adigm, being synchronous, can lead to

better application recovery than would i

asynchronous paradigms in the case of
remote computation failure.

One drawback of synchronous
RPCs, however, is that an RPC call
causes blocking when executed.
Multithreading is introduced to
address the blocking issues by allow-
ing the programmer to create multi-
ple threads within an address space
that perform multiple operations in a
concurrent paradigm. When one
thread of a process is waiting on an
RPC reply — or any input or output
— other threads within the process
can be doing useful tasks, which
increases an application’s throughput.
Thus, a threads-and-RPC combina-
tion affords the best of both worlds:
ease of use, failure recovery, and per-
formance. '

Not all applications will benefit
from multithreading. For example,
performance of CPU-bound applica-
tions tends to decrease when multi-
threaded on a uniprocessor: the model
is less efficient on CPU-bound
processes because of the threads’ addi-
tional context switching. However, on
a multiprocessor threads scheduler
that is supported by the operating sys-
tem, the increase in true parallelism
can make the multithreaded model
more efficient. Michael Powell and
Steve Kleiman give a more detailed
analysis of uniprocessor versus multi-
processor computing and user-level
threads versus threads supported by
the operating system.*

JEEE SOFTWARE

Distributed applications

: Threads

. “Operafing syster’. .-

Figure 1. Block diczgram of the Open Sofizare Fonadation's Distribated
Computing Environment. DCE supports the RPC communication-synchronization
paradigm across address spaces and multithreading within an address space.

DCE

DCE is a collection of services for
the development, deployment, and
use of transparent distributed systems
using the client-server architecture.
Enabling application-level interoper-
ability and portability among hetero-
geneous platforms through common
application programming interfaces is
the heart of DCE. It supports the
remote-procedure-call synchronous-
communication paradigm across
address spaces and over various net-
work protocols, with multithreading

within an address space for concur- i

rency. DCE uses a directory service
and name server to provide client-
server location transparency.
Directory services are provided within
an administration domain, called a
cell, and among cells using Domain
Name Service and X.500.

DCE security services are based on
Kerberos, a security protocol and sys-
tem developed as part of Project
Athena at MIT. It provides a trust-
worthy, shared-secret authentication
system. Its DCE services include
authentication of servers and clients,
support for resource authorization by

an application server in providing ser-

vices to its clients, and various levels
of message integrity and encryption
— all at different cost levels. DCE
contains two other distributed ser-
vices: its Distributed File System pro-
vides access to files across machines
and its Distributed Time Service
assists in synchronizing clocks.
Architecturally, DCE lies between
the applications and the operating sys-
tems and network services. DCE client
applications issue a request for service
using DCE functions. DCE, in turn,
uses the operating system and network
services to communicate that request
to a server and to communicate the
results of the remote computation back
to the client. Figure 1 shows a block
diagram of DCE. For a more detailed
overview of DCE, see the Open
Software Foundation’s publications.”®

THREADS

The DCE multithreading service
allows multiple, simultaneous control
flows within a single process or address
space. The main advantage of threads
is increased throughput by more effi-
cient use of system resources.’

Figure 2 shows the difference

8%

z' “ opw'm of the xngle—tbrmded and multithreaded programming :
models. The multithreaded model bas multiple stack-and-vegister pairs allocated to
i ing states and scheduling policies associ-

each thread.

between the single-threaded and mul- i
tithreaded programming models. Both i
have heap-, static-, code-, stack-, and £

register-memory allocations. The mul-
tithreaded model, however, has multi-
ple stack-and-register pairs allocated

for each thread. This lets multiple

threads have both thread-specific,
stack-and-register data and shared,

local data of a procedure is allocated
from the top of the heap when the pro-
cedure is invoked and the data is
released from the top of the heap when
the procedure returns. The static data,

on the other hand, persists until the }

return of a procedure. The code seg-
ment is shared by all threads within the
address space.

By using threads in a client-server
computation model, as supported by
DCE, server applications can service
multiple clients concurrently. DCE
servers are multithreaded by default. A
client can use threads to make multiple

disk I/O or network-packet reception.

The applicability of threads is not }

restricted to distributed systems.
Consider a communications applica-

an asynchronous communications pOI‘t

i

in addition to performing other appli-
cation tasks. Because the reception of :

data from the port is asynchronous,

out read calls, to handle asynchronous

operating-system calls that are expen-

¢ sive in a shared-processing environ-
i ment. You could implement the appli-
i cation using two threads, one to i
i receive asynchronous data and the sec-
i ond to execute other application opera- i
i tons. The thread that reads from the ; deadlock, and priority-inversion ‘condi—
i port can continuously read data and i
i pass it along to the other thread for :
i processing. When no data is available
i to read, the thread will block until
i more data is received. In the mean-
time, the other thread continues to
i execute other application tasks. For a
i general overview of threads, see |
i Andrew Birrell’s An Introduction to
simultaneous requests to a server or to ;
multiple servers. Each thread progress- i
es independently using its own stack- }
space and register resources, periodi-
cally synchronizing with each other |
and sharing the heap- and static-data
process resources as necessary. Some :
threads continue processing while i
other threads wait for services such as |

Programming with Threads."

Threuds implementation. A thread imple-
mentation can either be in user or ker-
nel (system) space. Currently, many
DCE thread implementations are done
in user space. As threads become a basic
unit for scheduling and resource alloca-

in user time and the operating system

has no control of the threaded environ-

{ ment except to make resources available
i to the entire process. The management
i of threads within the process is analo-

gous to the process management within
an operating system: scheduling and
resource allocation take place, but at the
user level. Also, like processes within an
operating system, threads have process-

ated with them.

Threads APl. The DCE threads pro-
vide a set of primitive function calls that

i serve as application programming inter-
i you cannot know when data will be :
i received. In a single-threaded environ- ;
i ment, you would typically use interrupt ;
i processing — in which reception of i
i data interrupts the application — or !
i polling the port for data with timed-
heap-and-static data within a single }
address space. The data allocated from !
heap behaves like a stack in that the }

faces to create, administer, and synchro-

i nize threads within a single address

space. These primitive operations can
be classified into the following groups:
+ Administration includes functions

i for threads creation, cancelladon, pri-
i ority setting, stack size setting, and
input. However, both require multiple :

clean-up after thread termination.

i These functions let you tune attributes
i of a thread to meet specific require- -
i ments.

. Synchronlzauon lets multiple

i threads communicate with each other.
i Thread synchronization prevents race,

tions.
+ Signal-handling catches and

i sends operating-system signals. These
i interfaces can be used in the traditional
i sense to communicate to other
! processes in a system or to create
i event-driven applications.

+ Thread-specific data store lets a

i thread have its own version of a global
i data structure.

To introduce the-threads APIs used

{ in this article’s examples, in the box
i that starts on page 84 we summarize
i the various APIs typically required to
{ realize a threaded application. You may
¢ want to read this text first if you have
i little or no Posix threads experience.
tion by an operating system, this will i '

i change. For instance, Sun’s Solaris i

_operating system supports kernel-level
i threads. In a user-space threads imple- |
i mentation, threads management is done !
tion that reads from and writes data to §

i THREADED PROGRAMMING

The examples that follow show

{ when and how to use DCE threads.
{ We adopted the sample code frag-

JANUARY 1996

db_access_thread() {

ments from systems developed using
DCE. With each’ example, we include
the rationale for choosing one imple-
mentation technique over another.
These examples are not optimized and,
to enhance readability, may omit vari-
able declarations, mutex and condition
variable-initialization routines, and
error checking.

Synchronization granularity. A key aspect
of threads programming is synchroniza-

interaction. Synchronization is required
when a thread is about to enter a “criti-
cal-processing region”; that is, when it
needs to lock out other threads from
changing a shared resource or wait for
some predetermined event to happen.

DCE threads have two synchroniza-
tion object types: a mutex — short for
mutual exclusion, and commonly
referred to as a lock — and a condition
variable. Mutexes ensure that the
integrity of a shared resource is main-
tained by serializing the thread-access
and thread-update functions.
Condition variables serve as a signaling
mechanism between threads. You
should use mutexes for short-term
locking, such as serializing updates to a
data item, and condition variables for
long-term locking, such as waiting for
an asynchronous event to occur. We
make this generalization because a sys-
tem’s underlying mutex functionality
could be of the spin-lock type. A spin-
lock mutex would constantly execute,
spinning until it obtains a lock. This
wastes system resources during rela-
tively long waits.

Threads synchronization, or lock-
ing, ranges from fine to coarse. We
define fine locking as having a locking
mechanism for each shared resource;
coarse locking has a single locking
mechanism for several resources and
for all threads within the process.

Coarse synchronization. You need coarse
synchronization during the exccution
of function and library calls that are not

thread-safe. These calls require that all :

IEEE SOFTWARE

pthread_lock_global np():
open_data_base (db_name);
first_data_base_operation();
last_data_base operation();
close_data_base(db_name) ;

pthread_unlock_global np():

/* get global lock */

/* release global lock */

Figure 3. Example of coarse-grain locking. This code fragment contains a sequence
of operations on a database. In this and subsequent figures, threads appear in italic.

IR S
printt {

exit (-1); }

L2 - DR
LELTOr:

f#fdefine LOCK(X) if (pthread mutex_lock (&X) == -1) { \
c wtex\n

#define UNLOCK(X) if (pthread _mutex unlock (&X) == -1) (\
printf (“Error: Can’t unlock mutex\n”); \

exit (-1); 3}

db_access_thread() {
pthread mutex_t

LOCK (db_mutex) ;

open_data_base (db_name);
first_data base_operation();

last_data_base_operation();
close data_base;
UNLOCK (db_mutex) ;

}

db_mutex;

/* lock database access */

/* unlock database access */

Figure 4. Example of fine synchronization. The global lock-unlock is replaced with
a local mutex lock-unlock known to all threads.

related thread activity be suspended
while the controlling thread continues
processing. The code in Figure 3 shows
coarse-grain locking for a sequence of
operations on a database.

The function calls to pthread_lock_
global_np and pthread_unlock_ global_np
lock and unlock a single, process-wide
mutex. In Figure 3 and the rest of the
examples, calls to the threads’ API are
highlighted. By introducing this type
of locking in a DCE-based server, you
can serialize database accesses within
the server. Remember, DCE servers
are multithreaded by default and
process requests as they are received.
This implementation has the advan-
tage of being easy to program: the
global lock and unlock functions
require the addition of only two lines
of code around the critical region.
The drawback of using the global lock
is that all other threads, including
nondatabase-related threads, that use
the global lock-unlock are not allowed
to run during database access, thus
reducing concurrency in the process.

Fine synchronization. The use of the
global lock in the previous example was
convenient in development terms, but
not efficient. A fine locking mechanism
can be established to make this code
more efficient. This involves replacing
the global lock-unlock with a local
mutex lock-unlock known to all
threads that access the database. This
lets all database-related threads serial-
ize access while letting other threads
run. In Figure 4, the variable db_mutex
is associated with the database db_name.
The pthread_mutex_lock function call
returns immediately after locking the
mutex, if the mutex is available, or
blocks until a fock can be obtained.
The pthread_mutex_lock and pthread_
mutex_unlock functions return a -1 if a
system Or programming error occurs.

Infermediate synchronization. You can use
intermediate levels of synchronization
to let one mutex protect multiple
resources. You would do this to simpli-
fy application code while maintaining
correct semantic processing. For exam-

feature

ple, a data structure or data object may i
consist of # variables. In intermediate
synchronization, you associate just one
mutex to provide access to the struc-
ture. All threads assigned to access any

..g4'.

CORE APIS FOR DCE THREADS

The format of all Posix-
thread APTs is pthread_
<object>_<operations, in which
such
as a mutual exclusion — or
mutes — and can possibly be
null. Function calls that end
with the _np suffix are called
nonportable. DCFE, threads
are based on Posix 1003.4a
Draft 4 standards.” Because
the Posix document is evohr-

1 P T I,
<.()‘|7JCLL) Celdl DC dll 1LCII

ing, the DCE threads are not

coinpatible with the carrent
or final version of the Posix
threads standard. To maxi-

" mize application portability,

we ideéntly some imconpati-
bility Issucs between the
Posix and DCE threads.

New threads are created
using the pt-h're'ad__ create func-

~tion call. This routine

reserves thread. stack space
trorn the heap, assigns attrib-

“utes to the thread suchi-as
- priority, and schedules the
- spcu fied 1hrmd to be execut-

function may or
urn helorc. rhc

texes must be inidalized
before they can be used by
any thread. You do this with
t.ﬂ(ptnr(-:d(l muiex, l_[“[lull(,“
tion call, with a poiater to a
matex object and a parame-
ter specifying the atwributes
to give the mutex.

A mutex can be in either a
locked or unlocked state and
is locked or unlocked by call-
ing the pthread_lock or
pthread_unlock functions
respectively. Each of these
function calls requires a
pointer to the mutex to be
locked or unlocked. "I'he se-
mantics of the pthread_
utex_trylock function call is
similar to the pthread_ mutes_
lock function call except that
the call returns immediately
when the mutex is locked.
Locked mutexes can only be
unlocked by the thread that
issued the lock, which is also
known as the owner.

Operations on mutexes,
in either state, de epend on the
attributes aé.sxgncd to each
muutex at the tme of cre-
adon. There arc three kinds

_of mutexes: fast, which is the
‘default; recursive; ard nonre-
s cursive.

Mutexes must be deleted
from the runtime environ-

-ment when they are no

.. longer needed by the pro-

require I.aif
the defat

hread -s'y:ﬁthiﬁni_zuﬁor:i: Mu-"

- gram. Removal of unneeded
" mautexes returns Memory to
theithreads manager for

her:threads to use. Mutex-

of the variables must first lock the i
mutex before making any reads or |
writes on the object. This preserves }
data integrity because only one thread :
i can lock the mutex at a time; program-

es are deleted using pdnf:ad
mutex_destroy.

Condiiicn variubles. Sendi
and receiving notification to
other threads that scme prr
defined state hasbeen
achieved requires conditién’

variables. The conceptsof | ..

condition variables and
mutexes are similar in natuge
but are different in practice. -
Mutexes are good for short-

lived locking and unlocking. -

such as variable in¢rement-
ing and decrementing. Co:
dition variables should be
used for longer term condi<..
tional locking operatons s

as “saspend thread processing -

until variable counter is equal
to 7.” In the Posix nomencla-
ture, the condition waited for
is called the predicate.

Because condition vari-
ables are a shared resource,
cach one must have a mutex
associated with it. Recursive -
mutexes must not be used
with condition variables
because the implicit unlock
function of pthread_cond_wair
and pthread_cond_timedwait
may not put the mutex in an
unlocked state for other
threads to lock.

“There are two thread
functions that a thread can
call to block untl a condition
is raised by another thread:

* pthread_cond _wait waits
for a condition to be raised
by another thread that shares

.-tm_n-al awali
-dictably. Witho
" predicate, a- thr
Iy proceed and
wndesired resul

ming complexity is reduced as well

because only one mutex is used instead

of » mutexes.
Intermediate

returi i .

Both of thesé:

inust be passed a lo
-mutex and an ihitiz

dition-variable..”
ti\c uﬂl un]oL g

tion to bc mlsc&l \\ [1c:n rhc

-condition-is raised, the © - 3

nmutex is onceagain: logked

and the control is mmrn(—d o

to the ca]]mg functon.

A thread can notify oth
threads that any predicates
are true in one of two wags:

@ pthread _cond_signal -

wakes a randomly selected .

thread that is waiting on a

JANUARY 1996

synchronization
reduces the code’s length and complex-

ity. Fine synchronization would !
i er thread updates a different variable.

require a mutex for each variable in the
structure. The disadvantage of inter-

mediate synchronization is that a
i fine — should match the expected

thread assigned to update one variable

in the structure must wait while anoth-

In general, the level of synchro-
nization — coarse, intermediate, or

i level of parallelism in the application.
i You should use high degrees of syn-
i chronization when the probability of
i parallelism among threads is high.
i You should use decreasing levels of

condition variable. All other
threads that are waiting on
the condition variable remain
blocked.

¢ pthread_cond_broadeast
wakes all the threads waiting
on a condition variable. The
first thread to exccute is
determined by the threads
scheduler.

Two other complement-
ing function calls can be used
to synchronize threads:
pthread_join and pthread _exit.
The pthread_join causes the
calling thread to return the
exit code of a specified
thread in the terminated
state. ‘This function causes
the calling thread to

¢ Return immediately if
the thread specified is in the
terminated state.

¢ Block the calling thread
until the specified thread ter-
minates.

+ Fail when the specified
thread has been detached.
This 1s because detached
threads have had their stack
space returned 1o the process.

You should know that it is
likely that the runtime
semantics of this function

_will change in the final ver-
sion of the Posix standard.
.Currently, a pthread_join call
to a terminated thread
returns the exit code of the
specified thread and more
than one thread is allowed to
join to a terminated thread.
Newer versions of the Posix

standard specify that a
pthread_join call will do an
implicit pthread_detach on the
specified thread in addition
to returning the exit code.
"I'his means that only one
thread can join to a terminat-
ed thread. Therefore, you
should avoid multiple joins
to the same thread.

"T'he pthread_csit function
call terminates processing of
the calling thread. "This func-
tion causes the thread to stop
processing and stores the exit
information for other threads
to inspect. The allocated stack
space remains in place until
pthread_detach is called. This
function also pops pending
cleanup routines.

Thread cancellation. The
DCE thread-cancellation
tunction lets one thread mark
itself or another thread for
termination. The target
thread is allowed to queue
cancellation requests and exe-
cute predetermined cleanup
routines before terminating.

Cancellation is controlled
by the threads interrupt-con-
tro} functions. Threads can-
cellation requests are proces-
sed according to the threads
interruptibility state. When
c:nablcd, Cl\l]‘.‘cllﬂti()l‘lﬁ ta];c
place at either interruption
points in the thread or when
a thread is asynchronously
terminated.

Each thread maintains

state information on how to
process cancellation requests.
This information is classified
into two categories:

& Interrupt enable. "This
information determines if the
thread should process or
ignore cancellation requests.
Cancellation is enabled and
disabled by calling the
pthread_setcancel function
with the CANCEL_ON/CAN-
CEL_OFFE parameter. CAN-
CEL_ON is the default
hehavior for all threads.

o [nrerrupt type. This
information determines how
a thread processes cancella-
tion requests when CAN-
CEL ON is enabled. When
the interrupt enable mode is
ENABLF_OXN, threads can be
canceled cither synchronous-
Iy, which is the default, or
asynchronously. A thread can
allow or disallow asynchro-
nous cancels by calling the
pthread_sctasynceancel func-
tion with the CANCEL_ON
or CANCEL _OFF parameter.
A thread is in synchronous
cancel mode whenever the
asynchronous cancelability is
turned off and the cancel
mode is CANCEL_ON.

“I'hread cancellation re-
quests are made by calling
the pthread_cancel function
with the thread identifier of
the thread to cancel. When a
cancellation request is issucd
to a thread in synchronous
cancel mode, the threads-

management functions mark
the target thread for cancella-
tion and terminate the thread

at the next cancellation poiat. -
A cancellation point s reached

when a thread calls either the
pthread_setasynecancel, -)
pthread_testcancel, pthread.

delay_np, pthread_join, pthread_-

cond_wait, or pthread_ cond_
timedwait function calls.
Threads in'the asynchro-
nous cancel mode are termi-
nated immediately upon
receipt of a cancellation
request. Because termination
is immediate, the thread
should not be performing
any operation that would
result in an undesired state
when it is canceled. For
example, the results are non-
deterministic if a thread is
canceled during a call to the
malloc function call. Results
of this function-call type are
not known because the can-
ccled thread has no way of
indicating that the call cither
failed or succeeded.
T'herefore, threads should
not be asynchronously can-
celed when they are acquir-
ing, holding, or updating
shared-data structured
objects or when they are
releasing system resources.

REFERENCE
1. Threads Extensivn for Portable Oper-
ating Systemrs, P10O34a. Draft 4,
HEEFE CS Technical Committee
on Operating ans, €S Press,
[.os Alamitos, Calit., 1990.

IEEE SOFTWARE

1 typedef struct {/* struct is a general mechanism to pass */
2 handle t binding_handle; /* several parameters to a

newly */
3} thread args;
int ctr;
pthread_mutex_t
members */
pthread cond_t sync_cv;
main() {

sync;

thread args t_arg [MAX_THREADS];
t_id [MAX_THREADS];

pthread_t

/* created thread*/
/* counter & Number of running threads */
/* mutex to update structure

/* CV to signal boss thread */

/* array of structures */
/* array of thread ids */

/* get server binding info */

LOCK(&sync)
for (ctr = 0;
threads*/

ctr < N;

t_arglctr] .binding _handle
&ctr;

t_arglctr].running =

/* first lock the mutex for the wait call */
ctr++) {/*ctr is shared by all

= serverslctr];

pthread create(&t_id[ctr], pthread_attr_default,
RPC_FUNCTION, é&t_arglctr]);

}

while(ctr I= 0)

/* wait for all threads to stop */

pthread cond_wait(&sync_cv, &sync);

UNLOCK (&sync) ;

/* remainder of appllcatlon code */

RPC_. FUNCTION (arg)
thread_args *arg; {

LOCK(&sync)
ctr -= 1;
if(etr == 0)

/* make RPC call and other operations */

/* prevent other threads from decrementing */
/* decrement running threads count */

/* is this the last thread */

pthread_cond_signal (&sync_cv); /* wake up main thread*/
UNLOCK (&sync) ; /* let other worker threads rumn */

pthread_exit(0); /*

exit and terminate thread */

Figure 5. Example of the synchronous boss/worker model. In this code fragment, a
boss thread creates 0 worker threads, each of which will execute an RPC call o its
respective server. The wovker thread that completes the last RPC signals a condition
variable to inform the boss thread that work is complete.

typedef struct {

handle_t binding_handle;

} thread_args;
main() {

thread_args

pthread_t t_3id

for(ctr =0 ctr < N ;

/* binding handle to server */
t_arg [MAX_THREADS]; /*
[MAX_THREADS] ; /*

ctrtt) (/7
_t_arg[ctr] .binding_handle =

array of structures */
array of thread ids */

create N threads */
servers|ctr];

pthread create (&t_did[etr], pthread attr_default,
RPC_FUNCTION, &t_arglctr]);

) .
for(ctr = 0
pthread_join (

ctr < N;
3

RPC_FUNCTION (
thread_args

arg)
*arg; {

/* make RPC call and other operations */

pthread_exit (0) ;
3

the threads.

synchronization‘ as the probability of !

parallelism within the process decreas-
es. Finally, you must evaluate design
trade-offs between efficiency and code
complexity on a case-by-case basis.

ctr++) {
t id[etr]

) /* join with thread */

Simultaneous multiple threads and RPCs.

{ Threads can be used by applications
i to execute RPCs in parallel even with
i one CPU: one thread can continue
i processing while other threads are

{ blocked waiting for the synchronous

RPC to complete. Multiple RPCs and
I/Os can also be issued using synchro-
nous I/0 multiplexing functions such

i as the select function call. However,
i this solution requires that the applica-

tion manage the synchronous reads

i and writes and the polling of file

descriptors.

Synchronaus boss/worker model. A typical
computation model for the use of

i multithreading is the boss/worker
i model, in which a boss thread assigns
¢ tasks to #» worker threads. The boss

may wait for a reply from one, some,
or all n workers before proceeding:.
We call the first scenario described

i below synchronous because the boss
i thread waits for all # workers to com-

plete before continuing.

To'comply with the synchromza-
tion rules outlined earlier, we use con-
dition variables in this example —
waiting for the completion of multiple
RPCs could take a relatively long

i time.

In the code fragment shown in

! Figure §, a boss thread creates =
{ worker threads, each of which will
i execute an RPC call to its respective
i server. The worker thread that com-
pletes the last RPC signals a condition
i variable to inform the boss thread that
i work is complete. Figure 4 shows the
i definitions
i UNLOCK macros. The list of binding
i handles for servers is contained in the
{ array servers. The loop indéx variable
i ctr 1s known to all related threads
| i because it is a global variable.

for the LOCK and

This code shows several key points.

S — — | | The function RPC_FUNCTION exe-
Figure 6. Alternative method of boss/worker thread synchronization. This approach :
simplifies the program by 7feducmg the number of lines of code needed to synchronize
i instance of local variables within each
! thread exists on a separate stack space.
i The code segment for the function'is
i shared among threads. This allows
! multiple simultaneous execution of
! the same function in the same address
i space with different arguments. When
i one thread blocks on an RPC call, or

cutes simultaneously as z separate
threads. Figure 2 shows that each

JANUARY 1996

is preempted by the threads scheduler,

another thread is assigned CPU time.

Each thread requires its own sepa-
rate arguments structure as declared
on line 8. Multiple structures are
required because the arguments for
each thread must persist after the
pthread_create call. The use of multiple

structures would not be necessary in a |

single-threaded model.

The RPC_FUNCTION protects both :
the running counter decrement in line i

25 and the test for zero in line 26. This
avoids a race condition between one
thread setting the variable to zero and
another thread reading a zero value, or
two threads reading the same value and
decrementing one from the same value,
such as losing an update. The order of
lock; decrement, test, and unlock guar-
antees that the thread that set the vari-
able to zero reads the value as zero.
The program uses the pthread_cond_
wait call on line 19 and the predicate
test of ctr '= 0 to determine when all
threads have completed. Predicate tests
are required when using the
pthread_cond_wait and the pthread_cond_

i i i Posix i . . . S
timedwait routines because the OSIX information from the first server that responds is passed back to the application.
specification does not specify rigid ! ‘
return criteria for these functions: :
Either of these calls can return at any !

time, not just when the application sig--

nals it to return. The pthread_cond_wait
and pthread_cond_timedwait calls unlock
the associated mutex before waiting for
the respective condition to be raised.
When the condition is raised, the
mutex is once again locked and control
is returned to the calling function.

This example uses a medium-level
synchronization because the mutex
sync used for the condition variable
sync_cv is also used to serialize access
to the variable czr.

Figure 6 shows that you could also
achieve synchronization by using the
pthread_join routine to wait for each
thread to complete. This approach
simplifies the program by reducing
the number of lines of code needed to
synchronize the threads. We provided
the previous example to show the

IEEE SOFTWARE

struct ARGS {
handle_t binding_handle;
} t_arg [MAX_THREADS];
LOCK(done) ;
started = 0;
for(ctr = 0; ctr < N; ctr+t+)} {
t_arglctr] .binding_handle = servers[ctr];
pthread create(&t_id[ctr], pthread_attr_default,
RPC_FUNCTION, &t_arg[ctr]):

0N OYWU W N

}

started++; /* tell threads all threads started */

pthread _cond broadcast(&start_cv);/* tell threads to start

while (first_server == NULL)
pthread_cond _wait(&done_ cv, &done);
UNLOCK(done);
for (ctr = 0; ctr < N; ctr++) { /* clean up threads
space */
pthread_cancel(t_id[ctr]); /* kill the threads */
pthread_detach(&t_id[ctr]); /* clean up space */
}
.... /* remainder of application */
RPC_FUNCTION (arg)
struct ARGS arg;
{
if(started != 1) {
LOCK(start);
while(started 1= 1)
pthread cond wait(&start cv,
UNLOCK(start);
}
pthread_setasynccancel(CANCEL_ON);
rpe_mgmt_is_server_ listening(arg->binding_handle, &status);
LOCK(done); /* prevent other threads from
changing first_server variable */
if ((status == error_status_ok) && (first_server == NULL)){
first_server = arg->binding_handle;
pthread cond signal(&done_cv);

/* wait until all threads created */

&start);

}

UNLOCK (done) ;

pthread_exit(0);
39 }

Figure 7. Example of the asynchronous boss/worker model. The code selects an

active server from a list of potential servers in a DCE-based application by creating
a thread for each potential server that sends a call to each respective server. Binding

interrelationships between the various
threads’” APIs.

Asynchronous boss/worker model. Some
applications will have requirements
similar to those shown in the previous
section, except that the boss thread
only waits until the first RPC com-
pletes before resuming execution. For
example, a client can have a set of ser-
vice providers, generally of the read-
only type, that supply an identical ser-
vice such as replicated directory. In
such a case, a client can locate an active
server by either polling each, one at a

! time, using the single-threaded model,

or by polling all the servers at almost
the same time using the multithreaded
model. The search in the multithread-
ed model is called off as soon as a serv-
er responds.

Figure 7 shows a code fragment that ;

! selects an active server from a list of

potential servers in a DCE-based
application. It does this by creating a
thread for each potential server that
sends an rpc_mgmt is_server_listening call
to each respective server. Binding
information from the server that
responds first is passed back to the
application using the first_server global
variable. The remaining RPC threads
are canceled. The servers to contact
are contained in the array servers. This
code illustrates several important
points:

¢ On line 30, asynchronous cancel-
lation of each worker thread is enabled
so that each thread can be canceled by
the boss thread on line 17 after the first
RPC returns.

¢ On line 27, asynchronous cancel-
lation is enabled in each worker thread

il

int mode;

pthread _cond_t
}s
BosgFunction() {

gtruct timespec add,

p->mode = 0;
LOCK(&(p->sync));

DoStudy,
add.tv_gec = 2; /*

| add.tv_nsec =

p->mode =
UNLOCK (& (p->sync));
return 1;

}

void DoStudy(struct

LOCK(&(p->sync)):
if (p-P>mode == 1

3

else (

}
UNLOCK(&(p->sync)
pthread_exit(0);
3

struct THREAD_ARGS { /* global definition */
/* synchronous/asynchronous flag */

pthread_mutex_t sync;/* mutex to prevent race condition */
sync_cv;

struct THREAD_ARGS *p;

p = (struct THREAD_ARGS
/* initialize to synchronous mode */

/* make RPC call

/* condition variable */

limit; /*
*) malloc(sizeof (THREAD_ARGS));

/* Lock the mutex */

pthread create(&thread_id, pthread_attr_default,

p); -/* create new thread*/

set number of seconds to wait */
0;/* and zero nanoseconds */
pthread get expiration_np(&add,&limit); /*expiration time */

/* sync_cv is a globally declared condition variable */
if (pthread_cond_timedwait (&(p->sync_cv),&(p->sync),&limit)!= 0)
1; /* RPC is now asynchronous */

THREAD_ARGS *p)

) { /* did RPC exceed time limit

.... /* do Synchronous processing */
pthread_cond_signal(&sync_cv)

)

chronous when it exceeds 2 seconds.

ffdefine READ 0 /*
ffdefine WRITE 1 . /*
int gui_pipel[2]; /*
........ /*
pipe(gui_pipe); /*

XtAddInput (gui_pipe[READ],

....... /*
XtMainLoop () ; /*
exit(0); /*

}

Label for the read end of the pipe

Label for the write end of the pipe

declare pipe variable

process initialization

create pipe

XtInputReadMask, CB,
more main() thread processing
start the event loop

exit main loop of X

NULL) ;

*/

/* pointer to the thread arguments*/
structures to track time

and other operations*/

/* do Asynchronous processing; e.g., report RPC results
in a separate widget */

/* wake boss thread*/

Fire 8. iulatz'ng asynchronous RPC calls. From the application’s
perspective, the RPC appears synchronous when it completes in 2 seconds and asyn-

=/
=/
*/
*/
*/

=/
*/
*/

/* This thread will be called by the application and will run */

/* with its cwn stack space. When the CGet_remote_data returns */

/* a message will be passed to the event loop manager which

| /* in turn callg the call back function to perform the
" /* X related functions that are not thread-safe.

Send_RPC_Thread () {

Get_remote_data();

/* thread that sends RPC
/* init code \xl1
/* send the RPC call

write(gui_pipe[WRITE],”done”, 4); /* write string to pipe

pthread_exit(0);
3

/* exit the thread
/* end of the Boss thread

/* the call back function (CB) will be called by the event
/* manager and executed as part of the main() thread

CB(W, c_data,
........ /*

cb_data)

declare variables, */

=/
=/
=/
=/
=/
>/
*/
x
*/
*/
=/

{ /* CB routine to process worker info*/

read(gui_pipe[READ], some_line, 4); /* remove data from pipe */

manager as if they were separate processes..

/* Perform X related functions as main() thread */

Figure 9. Example of making a program thread-safe by ensuring that the main
thread performs all the X-related processing and that the remaining threads, using
the interprocess-communications pipes mechanism, communicate to the X event-loop

after the pthread_cond_wait call. This’
prevents the deadlock condition of
canceling a thread that is holding a
shared resource; in this case, the shared
resource is the start mutex.

¢ The first_server variable updates
once and only once because of the ini-
tial-condition test done on line 33.
Without the initial-condition test, a
race condition would exist between
other worker threads that want to
update the variable and the boss
thread, which wants to-terminate the
search. Also, without the test another
worker thread can update the first_server
variable before the boss thread gets a
chance to terminate the remaining
active threads.

+ The pthread_join function cannot
be used because it is not known which
thread will complete first.

¢ The code fragment in Figure 7
can easily be modified if the boss
thread must wait for completion of the
first K of # threads or the first K 6f #
threads that return with some “suc-
cess” replies. In Figure 7, K= 1.

Simulating asynchronous RPC calls. The main
form of communication among
processes in DCE is synchronous
RPC: the calling party waits until it
gets a reply from the called party or
untl the RPC runtime returns a com-
munication failure. Asynchronous
RPCs can be simulated using threads
and timed condition waits. An asyn-
chronous RPC facilitates a calling
process to wait for a reply only for-a
specific amount of time. If no reply 1s
received during that time, the ¢alling
process proceeds with its execution. It
has the option of either receiving the
reply in background mode or ignoring
the reply.

For example, consider an applica-
tion with a graphical user interface.
‘We want the GUI to have a maximum
blocking time of 2 seconds. The appli-
cation’s RPC-round-trip time, the time
from the send to the receive, ranges
from 500 milliseconds to 4 seconds. To
meet the blocking requirement, a boss

JANUARY 1996

thread creates a worker thread to make
the RPC call. In this case, the boss
thread is the main thread of the GUIL
The boss thread can use the pthread_
cond_timedwait either to wait for the
RPC to complete or for the 2-second
wait to expire. In either case, the GUI
does not block for more than 2 sec-
onds. Figure 8 shows that, from the
application’s perspective, the RPC
appears synchronous when it com-
pletes within 2 seconds and asynchro-
nous when it exceeds 2 seconds.

For readability, we omit the predi-
cate test required around the pthread_
cond_timedwait and the initialization of
the mutex and condition variables.

The arguments to the worker thread
must be allocated from the heap and
not from the stack. This is necessary
because automatic variables declared in
the boss thread would be invalid in the
worker thread once the boss times-out
and returns to its calling function.

INTEGRATING THREADS

As of X11, Release 5, X-based pro-
grams are not thread-safe. However,
you can take steps to let multiple con-
trol flows exist in a process that is not
thread-safe. You can do this by making
sure that only one thread, usually the
main thread, performs all the X-related
processing and that the remaining
threads, using the interprocess-com-
munications pipes mechanism, com-
municate to the X event-loop manager
as if they were separate processes.

Figure 9 shows a code snip that
accomplishes this. All X-related opera-
tions are performed as part of the main
thread and the RPC call is issued from
a separate thread. The RPC thread and
the main thread are connected with a
unidirectional IPC pipe. The read end
of the pipe is connected to the event-
loop manager using the XtAddInput
function call and the write end of the
pipe is recognized by the RPC thread
because it is a global variable. When
the RPC is issued, the thread sending

IEEE SOFTWARE

server_thread(client_input, server reply)

char *client_input,
int £d{2]}., n;
socketpair (AF_UNIX,
SOCK_STREAM, 0, fd);

if (fork()) { /* parent */

close(£d[1]);

*gerver_reply; {

write(£d[0], client_ input, strlen(client_input));
n = read (fd[0], server_reply, MAXLINE);

server_reply[n] =

*/
return;
else { /* child */
close(£fd[0]);
if (£4[1]

‘\o’;

/* null terminate string

!= STDIN_FILENO)

dup2(£fd[1], STDIN_FILENO);

if (£4[1]

!= STDOUT_FILENO)

dup2 (£d4[1], STDOUT_FILENO) ;

execlp (“PROGRAM_NAME”,

“PROGRAM_NAME”, NULL);

Figure 10. Example of porting an existing application to DCE. The code is used by
the server thread to create a separvate address space that runs the nonyeentrant serv-
er code. A biderictional pipe does the input and output of the new process.

the call will block and the main thread
can continue to accept user input.
When the RPC completes, a string of
characters is written to the pipe. The
writing of this data will cause the X-
event-loop manager to call the call-
back routine specified during the
XtAddInput function call. This call-back
routine performs the application oper-
ations on the main thread in a thread-
safe fashion.

Porting existing applications to DCE.
Often, we must convert existing appli-
cations to DCE. The introduction of
parallelism increases the complexity of
the port because most applications are
written in the single-threaded para-
digm. To be thread-safe, the server
code must be rewritten to be re-
entrant. This rewrite converts global
and static variables to a local scope and
inserts locking and synchronization
steps where necessary to protect shared
data. Usually the client code will not
change much because of the client’s
generally low degree of parallelism.

The costs of converting a server

program to Support concurrency
increase with its size and complexity.
Also, many third-party products, such
as database-management and GUI
products, do not support concurrent
processing. Therefore, you must sepa-
rate the processes that are not thread-
safe from those that are. You do this by
having the server thread execute a fork
and exec to create a new address space
to execute the non-reentrant program.
Communications between the new
process and the server thread can be
done using any interprocess-communi-
cations facilities available to the appli-
cation.

Figure 10 shows the code used by
the server thread to create a separate
address space that runs the nonreen-
trant server code. A bidirectional pipe
does the input and output to the new
process. The parent process writes the
data to the pipe and then reads the
response from the pipe. The child
process reads and writes data using
stdin and stdout.

'This implementation suffers from
the disadvantage that a separate

process is created for each client
request. However, you must weigh the
additional use of system resources
against the costs of converting a non-
reentrant program to be thread-safe.

Large dafa structures. A thread’s stack
space can quickly be used up by
declaring large automatic data struc-
tures or arrays in a thread.
Diminished stack space can cause the
thread to exceed its allocated stack
and cause undesirable results. To
reduce stack-space problems, memory
allocations for large objects such as

data structures and arrays should be :
taken from the heap. This decreases :

the chances of a thread running out of
stack space.

The heap can also run out of space
when there is either too much demand
for space or the memory is misman-
aged. However, this situation can be

easily detected and gracefully managed !

by the application. The same cannot
be said for a thread running out of

nal manager has no indication of
which thread ran out of stack space.
C urrently, the absence of debug-
gers for threaded programs

poses a major problem when writing
distributed applications. In the absence
of a commercially supported multi-
threaded debugger, we offer some
practical advice on developing client-
server-based distributed applications:

¢ First, develop the interface speci-
fication.

¢ Test and debug the server and
client as a single-threaded, single-
address-space program. The server is a
subroutine and the client is a main pro-
gram.

¢ Modify this stand-alone program

as a single-threaded server program for i

all critical regions, using pthread_lock_
global_np and pthread_unlock_ global_np
constructs and a single-threaded client
program. Test them as client and serv-
er by linking with IDL compiler-gen-

i erated stubs and header files.
stack space because a segmentation |
violation signal is generated and the
program either terminates or the sig- i

¢ Multithread the server and then
the client, preferably in that order.
Breaking the development into

ACKNOWLEDGMENTS

REFERENCES

v

Systems, Jan. 1984, pp. 39-59.

ey

Surveys, Mar. 1989, pp. 261-322.

Computers, Aug. 1989, pp. 1173-1187.

o

1991, pp. 65-79.

0 oo

Equipment Corp., Palo Alto, Calif., 1989.

We thank Maurice Lampell, Gary Levin, Bob Robillard, Diane Ruddock, and John
Unger, all of Bellcore, for reviewing this document.

1. “Threads Extension for Portable Operating Systems,” P1003.4a, Draft 4, Technical Committee on
Operating Systems of the IEEE CS Press, Los Alamitos, Calif., 1990.

. A.D. Birrell and B.J. Nelson, “Implementing Remote Procedure Calls,” ACM Trans. Computer
. H.E. Bal et al., “Programming Languages for Distributed Computing System,” 4CM Computing
4. K. Ravindran and ST Chanson, “Failure Transparency in Remote Procedure Calls,” IEEE Trans.

W. Richard Stevens, Unix Network Programming, Prentice-Hall, Englewood Cliffs, N.J., 1990.
6. MLL. Powell et al., “SunOS Multi-Thread Architecture,” Proc. Usenix, Usenix Assoc., Berkeley, Calif.,

Introduction to DCE, Rev. 1.0, Prentice-Hall, Englewood Cliffs, N.J., 1993.
OSF DCE Application Develgpment Guide, Rev. 1.0, Prentice-Hall, Englewood Cliffs, N.J., 1993.

B. Dasarathy, K. Khalil, and D.E. Ruddock, “Some DCE Performance Analysis Results,” Proc. DCE
Workshop, Springer-Verlag, Berlin, 1993, pp. 47-62.

10. A.D. Birrell, An Introduction to Programming with Threads, Systems Research Center, Digital

these steps facilitates the principle of
separation of concerns. Specifically,
within an address space program-logic
concerns are isolated from distribution
concerns, which in turn are dealt with
separately from concurrency issues. 4

David E. Ruddock has 11
years experience develop-
ing software solutions at
Bellcore. For the last four
years he has worked on the
design and development of
multithreaded, object-ori-
ented, distributed systems.
Before joining Belicore, he
worked at Bell Telephone
Laboratories,

Ruddock received an MS in computer science
from the Stevens Institute of Technology and a BS
in electrical engineering from the New Jersey
Institute of Technology.

Balakrishnan “Das”
Dasarathy has been, for
the past five years, a con~
sulting engineer on several
Bellcore Workstation
Software Factory products
anid has been applying dis-
tributed-system technolo-
gies, including DCE and
Encina, to a variety of
Bellcore products and sys-
tems in several domains. Prior to joining Béllcore,
Dasarathy worked for Concurrent Computer
Corporation and GTE Labs. He recently accepted
a position from J.P. Morgan as vice president and
technical architect to direct some of that company s
platform work for trading applications.

Dasarathy received a PhD in computer and infor-
mation science from Ohio State University. He is a
senior member of the IEEE and a member of
ACM.

Address questions about this article to Ruddock at
Bellcore, PY4-4N305, Piscataway, NJ 08854;
der@cc.bellcore.com.

JANUARY 1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manharaa.com

