
www.manaraa.com

Multithreading provides a
popular mechanism for

achieving concurrency, but
managing that concurrency

can daunt even experienced
programmers. The authors

offer a tutorial on using
threads safely and effectively

in an RPC-supported,
distributed environment.

DAVID E. RUDDOCK
and BALAKRISHNAN DASARATHY

Bellcore

concurrency mechanism that is gaining a lot of attention and pop-
ularity Iately is multithreading - the use of multiple threads or
flows of control within a single program. The use of threads
enables low system overhead because using multiple threads with-
in a process reduces the number of context switches that the oper-
ating system performs on the process. Context switching between
two processes is a lot more expensive, in terms of host resources,
than context switching between multiple threads within a process.

reads, however, requires an application programmer to manage con-
currency or synchronization explicitly. Traditionally, these issues have been the con-
cern of system-program developers. We believe that in most application scenarios a
disciplined use of threads can be easily learned and employed, and we show how this
can be accomplished.

We have successfully developed multithreaded applications using the Open
Software Foundation’s Distributed Computing Environment. DCE threads are based
on the evolving Posix standards for threads.’ This article provides an introduction to
programming with threads for experienced software developers familiar tvith languages
such as C. Although the focus of our work has been in the DCE arena, the guidelines
we define here can be extended to other environments that support multithreading,

0740.7459,96,$05.00 B 1996 IEEE JANUARY 1996

www.manaraa.com

such as Sun Microsystem’s SunOS 5.3
(Solaris) and Windows 95.

DCE supports the remote-proce-
dure-call’-’ communication-synchro-
nization paradigm across address
spaces and multithreading within an
address space. The RPC paradigm,
which is similar to the procedural-call
paradigm within a single address
space, can be easily mastered and thus
provides a migration path for reengi-
neering centralized systems to distrib-
uted systems. Moreover, the RPC par-
adigm, being synchronous, can lead to
better application recovery than would
asynchronous paradigms in the case of
remote computation failure.

One drawback of synchronous
RPCs, however, is that an RPC call
causes blocking when executed.
Multithreading is introduced to
address the blocking issues by allow-
ing the programmer to create multi-
ple threads within an address space
that perform multiple operations in a
concurrent paradigm. When one
thread of a process is waiting on an
RPC reply - or any input or output
- other threads within the process
can be doing useful tasks, which
increases an application’s throughput.
Thus, a threads-and-RPC combina-
tion affords the best of both worlds:
ease of use, failure recovery, and per-
formance.

Not all applications will benefit
from multithreading. For example,
performance of CPU-bound applica-
tions tends to decrease when multi-
threaded on a uniprocessor: the model
is less efficient on CPU-bound
processes because of the threads’ addi-
tional context switching. However, on
a multiprocessor threads scheduler
that is supported by the operating sys-
tem, the increase in true parallelism
can make the multithreaded model
more efficient. Michael Powell and
Steve Kleiman give a more detailed
analysis of uniprocessor versus multi-
processor computing and user-level
threads versus threads supported by
the operating system.”

IEEE SOFTWARE

‘_’
i’iglllY 1. lIl/Jt~l: Jlilgi’i!/;l ;d’ Ihi’ 0pt.l;’ SOJi;:‘,!l.c’ I’vll’ijl!i!li+,l ‘3 I)i.~~li~il~I~Ic;I
Computing Environment. DCE supports the RPC communication-synchronization
paradigm amoss address spaces and multithreading within an address space.

DCE

DCE is a collection of services for
the development, deployment, and
use of transparent distributed systems
using the client-server architecture.
Enabling application-level interoper-
ability and portability among hetero-
geneous platforms through common
application programming interfaces is
the heart of DCE. It supports the
remote-procedure-call synchronous-
communication paradigm across
address spaces and over various net-
work protocols, with multithreading
within an address space for concur-
rency. DCE uses a directory service
and name server to provide client-
server location transparency.
Directory services are provided within
an administration domain, called a
cell, and among cells using Domain
Name Service and X.500.

DCE security services are based on
Kerberos, a security protocol and sys-
tem developed as part of Project
Athena at MIT. It provides a trust-
worthy, shared-secret authentication
system. Its DCE services include
authentication of servers and clients,
support for resource authorization by
an application server in providing ser-

vices to its clients, and various levels
of message integrity and encryption
- all at different cost levels. DCE
contains two other distributed ser-
vices: its Distributed File System pro-
vides access to files across machines
and its Distributed Time Service
assists in synchronizing clocks.

Architecturally, DCE lies between
the applications and the operating sys-
tems and network services. DCE client
applications issue a request for service
using DCE functions. DCE, in turn,
uses the operating system and network
services to communicate that request
to a server and to communicate the
results of the remote computation back
to the client. Figure 1 shows a block
diagram of DCE. For a more detailed
overview of DCE, see the Open
Software Foundation’s publications.‘%*

THREADS

The DCE multithreading service
allows multiple, simultaneous control
flows within a single process or address
space. The main advantage of threads
is increased throughput by more effi-
cient use of system resources.’

Figure 2 shows the difference

81

www.manaraa.com

Thread Thread ‘ I.~ ..,._ _=.... ~._ i i ::
i Registers i i Registers i i Registers /

I: II

Figure 2. Comparison of the single-threaded and multitheaded programmi7zg
models. The multithreaded model has muLt$le stack-and-register pairs allocated to
each thvead.

between the single-threaded and mul-
tithreaded programming models. Both
have heap-, static-, code-, stack-, and
register-memory allocations. The mul-
tithreaded model, however, has multi-
ple stack-and-register pairs allocated
for each thread. This lets multiple
threads have both thread-specific,
stack-and-register data and shared,
heap-and-static data within a single
address space. The data allocated from
heap behaves like a stack in that the
local data of a procedure is allocated
from the top of the heap when the pro-
cedure is invoked and the data is
released from the top of the heap when
the procedure returns. The static data,
on the other hand, persists until the
return of a procedure. The code seg-
ment is shared by all threads within the
address space.

By using threads in a client-server
computation model, as supported by
DCE, server applications can service
multiple clients concurrently. DCE
servers are multithreaded by default. A
client can use threads to make multiple
simultaneous requests to a server or to
multiple servers. Each thread progress-
es independently using its own stack-
space and register resources, periodi-
cally synchronizing with each other
and sharing the heap- and static-data
process resources as necessary. Some
threads continue processing while
other threads wait for services such as
disk I/O or network-packet reception.

The applicability of threads is not
restricted to distributed systems.
Consider a communications applica-
tion that reads from and writes data to
an asynchronous communications port

n addition to performing other appli-
:ation tasks. Because the reception of
lata from the port is asynchronous,
Lou cannot know when data will be
received. In a single-threaded environ-
nent, you would typically use interrupt
srocessing - in which reception of
it a a interrupts the application - or
polling the port for data with timed-
3ut read calls, to handle asynchronous
input. However, both require multiple
operating-system calls that are expen-
sive in a shared-processing environ-
ment. You could implement the appli-
cation using two threads, one to
receive asynchronous data and the sec-
ond to execute other application opera-
tions. The thread that reads from the
port can continuously read data and
pass it along to the other thread for
processing. When no data is available
to read, the thread will block until
more data is received. In the mean-
time, the other thread continues to
execute other application tasks. For a
general overview of threads, see
Andrew Birrell’s An Introduction to
Programming with Threads.L0

Threads implementation. A thread imple-
mentation can either be in user or ker-
nel (system) space. Currently, many
DCE thread implementations are done
in user space. As threads become a basic
unit for scheduling and resource alloca-
tion by an operating system, this will
change. For instance, Sun’s Solaris
operating system supports kernel-level
threads. In a user-space threads imple-
mentation, threads management is done
in user time and the operating system
has no control of the threaded environ-

,

nent except to make resources available
IO the entire process. The management
3f threads within the process is analo-
~0~s to the process management within
m operating system: scheduling and
resource allocation take place, but at the
user level. Also, like processes within an
operating system, threads have process-
ing states and scheduling policies associ-
ated with them.

Threads API. The DCE threads pro-
vide a set of primitive function calls that
serve as application programming inter-
faces to create, administer, and synchro-
nize threads within a single address
space. These primitive operations can
be classified into the following groups:

+ Administration includes functions
for threads creation, cancellation, pri-
ority setting, stack size setting, and
clean-up after thread termination.
These functions let you tune attributes
of a thread to meet specific require-
ments.

+ Synchronization lets multiple
threads communicate with each other.
Thread synchronization prevents race,
deadlock, and priority-inversion condi-
tions.

4 Signal-handling catches and
sends operating-system signals. These
interfaces can be used in the traditional
sense to communicate to other
processes in a system or to create
event-driven applications.

+ Thread-specific data store lets a
thread have its own version of a glo~bal
data structure.

To introduce the threads APIs used
in this article’s examples, in the box
that starts on page 84 we summarize
the various APIs typically required to
realize a threaded application. You may
want to read this text first if you have
little or no Posix threads experience.

THREADED PROGRAMMING

The examples that follow show
when and how to use DCE threads.
We adopted the sample code frag-’

JANUA’RY 1996

www.manaraa.com

ments from systems developed using
DCE. With each example, we include
the rationale for choosing one imple-

.bpaccess-thread0 I

pthread~lock_global~npO: /* get global lock
open-data-base (db-name);
first-data-base-operationo;

.
last-data-base-operationo;
close-data-base(db-name);

pthread-unlock-global-np0: /* release global 3

mentation techniaue o;er another. i __
These examples are ‘not optimized and,
to enhance readability, may omit vari-
able declarations, mutex and condition
variable-initialization routines, and
error checking.

Figure 3. Example of coarse-grain locking. This code fi-agment contains a sequence
of operations on a database. In this and subsequent$gur threads appear in italic.

Synchronization granularity. A key aspect
of threads programming is synchroniza-
tion among threads for their proper
interaction. Synchronization is required
when a thread is about to enter a “criti-
cal-processing region”; that is, when it
needs to lock out other threads from
changing a shared resource or wait for
some predetermined event to happen.

DCE threads have two synchroniza-
tion object types: a mutex - short for
mutual exclusion, and commonly
referred to as a lock - and a condition
variable. Mutexes ensure that the
integrity of a shared resource is main-
tained by serializing the thread-access
and thread-update functions.
Condition variables serve as a signaling
mechanism between threads. You
should use mutexes for short-term
locking, such as serializing updates to a
data item, and condition variables for
long-term locking, such as waiting for
an asynchronous event to occur. We
make this generalization because a sys-
tem’s underlying mutex functionality
could be of the spin-lock type. A spin-
lock mutex would constantly execute,
spinning until it obtains a lock. This
wastes system resources during rela-
tively long waits.

Threads synchronization, or lock-
ing, ranges from fine to coarse. We
define fine locking as having a locking
mechanism for each shared resource;
coarse locking has a single locking
mechanism for several resources and
for all threads within the process.

Course synchronization. You need coarse
synchronization during the execution
of function and library calls that are not
thread-safe. These calls require that all

IEEE SOFTWARE

#define LOCK(X) if (pthreabmutex-lock (&Xl == -1) { \
printf (“Error: Can't lock mutex\n"): \
exit (-1); 1

#define UNLOCK(X) if (pthread-mutex_unlock C&X) == -1) 1 \
printf ("Error: Can't unlock mutex\n"): \
exit (-1); I
.

db-access-thread0 1
pthreabmutex-t db_mutex;

.
LOCK(db-mutex); /* lock database access */

open-data-base (db-name):
first-data-base-operationo;

.
last-data-base-operationo:
close-data-base:

UNLOCK(db-mutex) ; I* unlock database access */

&r-e 4. Example offine synchronization. The global lock-unlock is replaced with
local mutex lock-unlock known to all threads.

related thread activity be suspended
while the controlling thread continues
processing. The code in Figure 3 shows
coarse-grain locking for a sequence of
operations on a database.

The function calls to pthread-lock-
global-np and pthread-unlock- global-np
lock and unlock a single, process-wide
mutex. In Figure 3 and the rest of the
examples, calls to the threads’ API are
highlighted. By introducing this type
of locking in a DCE-based server, you
can serialize database accesses within
the server. Remember, DCE servers
are multithreaded by default and
process requests as they are received.
This implementation has the advan-
tage of being easy to program: the
global lock and unlock functions
require the addition of only two lines
of code around the critical region.
The drawback of using the global lock
is that all other threads, including
nondatabase-related threads, that use
the global lock-unlock are not allowed
to run during database access, thus
reducing concurrency in the process.

Fine synchronization. The use of the
global lock in the previous example was
convenient in development terms, but
not efficient. A fine locking mechanism
can be established to make this code
more efficient. This involves replacing
the global lock-unlock with a local
mutex lock-unlock known to all
threads that access the database. This
lets all database-related threads serial-
ize access while letting other threads
run. In Figure 4, the variable db-mutex
is associated with the database db-name.
The pthread-mutex_lock function call
returns immediately after locking the
mutex, if the mutex is available, or
blocks until a lock can be obtained.
The pthread-mutex-lock and pthread-
mutex-unlock functions return a -1 if a
system or programming error occurs.

lnfermediate synchronization. You can use
intermediate levels of synchronization
to let one mutex protect multiple
resources. You would do this to simpli-
fy application code while maintaining
correct semantic processing. For exam-

www.manaraa.com

ple, a data structure or data object may i of the variables must firs; lock the i ming complexity is reduced as well
consist of n variables. In intermediate i mutex before making any reads or ! because only one mutex is used instead
synchronization, you associate just one : writes on the object. This preserves i ofn mutexes.
mutex to provide access to the strut- i data integrity because only one thread i Intermediate synchronization
ture. All threads assigned to access any i can lock the mutex at a time; program- ! reduces the code’s length and complex-

CDRE APIS FOR DCE THREADS
,.u “3 ‘, ,’

‘l‘he format of all Posix- I:cxcs must be ir,itiaiizcd es are deleted 71sing jxhre& t&C same conditioir varia.blr
ch-eat1 AITS is ptllrcacl~ before they can bc used by mutex-cfcstro~. ~2nd murm pair. ,.I : ‘ ,’ 1,
col$xl~. <oI)c.raLio11>, in which XIV tlmad. You do this with . l plllrc~d~ccrlIcl:~tl.!nr::l,~~~lic ,’

4)ject> Glil l)e all i tem such the pthread-rmltex.. init func- Condition variables. Sendirq. is hrur-l&m~llg idenCic:B! to
35 ;1 lllll~lla~ cX\;c~llsiOn - Or tion cdl, with a pointer to a and receiving nodficaticjn to‘ pch~:cali~co~~d .\Vfli 1 5xcepr that :
ll1LltC.x - and c:ln pwibly be m:ltcx object and a parame- other threads that sGrne pre- thi:,a pplicatiorl c;in ryicc:i,~ a
null. l~unctilm cxlls that end tcr specifying the attributes tiefined state has’ been lrinic 10 .wp w&~.g four: .the
with the -nl) WI%?; are called to give the 111 utex. achieved requires conditio~l’ condition anti. fctlirn cont+l
IlcJnpor’“blc. rx::lK tl1reads A mutcx can be in either a variables. The concc~ts of to the calling pSoccs’. :l/lls,
arc I-mcd on l%six 1003 .iFa locket1 or unlocked state and con&ion variabics az2d
I’)rali -4 srzmdards.’ 13ecause

tlur;i~km of rhe rwit pw-id is‘
is locked or unlocked by call- mutexes are similar in r;anll-e spccifiecl as an ahdolui:c: dRLi:*

the I’osix document is wok- ing Ihe pchr-cati-lock or but are different in practice. and timi: an.rl iS-hdl~ cm’
ing: the IX.F, thrcadq are not ph cad-unlock functions .Mutexcs arc good for short-
colrtpatil)le wilh the currcIIt respcctivcly. Each of these lived locking and unlocking

stn~:t~cl using the pthrear~- ‘, 1

or final w-sion of the Posix
get-expirkon-np h.qcti.oh.

ftimctiori calls requires a such as variable increment- Tlicsc functions must be
thrc:ills standard. To masi- pointer to the mutex to he ing and tlecrernenting. Carp called frown within a, 10oj)
mizc applicatioil poi-tahilily, lo&cd or unlocked. The se- dition variables should be tlJat WSLS any pldk:,~,, be-
\Vc i.tlc:iitif~ some iiIcoirq)ati- mantics of the pthrcad- used for longer term condi- b72 aliowi ng the thrrcad yr)
IMi L!; i~sucs bclwecn the ;I:utex-trylcck &n&on calI is Conal locking operations such
I’osix: awl t)CIf-~, threads.

conti1luc. ‘.l‘his is ni~32ssaq~
sitni:iar to the pthreatl- mutex- as “rqcnd thread processing bccausc the Posix threads

Ne5.r threat:ls arc created lock fiinction call except that until variatde couiitcr is eq~l ‘sp&ificaticm lets the concli-
using chc phmd c‘reaw fmc- the tail retltrns immediately to 7.” In the T’oSLx ~lOiilCIlCla-
t im cilll. ‘This routine

tiwlill await return uiip~:u-
when the rnutex is locked. ture, the condition waited for

rcsclrvcs thread stack space
di (,I ablv. Without testing t.ht:

Locl:cr! mutgxes can only be is callcd the predicate.
6-01 n the heap, Agns attrib-

prtAc;;te, a rl~ead rrra!. L~lsl’-
docked by the thread that .&cause condition var-i-

WC5 10 IilC hreail SUCll as
iy proceed and pencrate

issued the lock, which is :~lso ables arc a shared resource, ui&sircd rc~~dts.
piwiLy, an;1 schetlules the knwn as the owner. each one must have a IIIUXX J~otli of thcsc irwctionc
S~CCI ficrl th red to bc CXCCXIL- Opcmtions on mulexes, associated with it. Recursive
cd. This hi~ction alay or

111us1 be p”ss’!‘I H Iockti
in either- state, depe:ld on the tJlaiCXes I7lustllot tie c.eccl mlitcx and an iilitializcil con-

may ilot rcn~rn More the attributes assibmed to each with condition variables
rhw;d st:.lrt< pmccssin:_:. m'l!tex at the l ime of CR-

dition vari2He. ‘The I-cspw
bcc~~~sc: the implicit *~~loc!< tivc call un.loclcs the ~ULC.Y

IVe rccotn~~wnd that ation. There arc three ltil~ds filllCtiO?l Of ~'~7tead.-ontl_~~;~il
I.l~Iaail .ltl.l’ tldAullt- hC pSXd :IS

txliwe wailing lhr ih contli-
orrnutcxes: Cast, which is die and ~)h~eati_cond_~.imed~:ljt tion I:0 Ix raised. L,L%ctn the

thrr I-lireatl aLtrit)rjtc paranie- default; recursive; ar: d aonre- may Ilot put the mutcx in an condition is raised; the
tc(:r until 111t threads packzgc cursive. doclced stntc for other
wxxl conhwns t-o Ihe Posix

rimex is once again Ioclrcd
Mutexes mist he d&ted thr&s to lock. and the coiWol is i.ctmrnrcl

stu-dirtl. ‘T‘hc only exception hm t!be rmstimc environ- ‘Y’here are two &II-cad
ro this ~ec~or~~l-ricJ.Jdati(jn mcnt when they are 110

to the calling ~11ncti0n.
functions that a thread an

0cc11rs \$ hen tlcaling wid2 I~~lgC.~ 1- lWAX~ l)g tllC IJIW-
.A ~.hE!:ld c;:lJl. .llOLi fc; OthCJ:

~111 1-o block ~rntil a condit.ion
threads tlwr reql~irc larger

threads lhnt any prctlic;~~c.s
pea-m. Iicrnoval of ~mnCedet1 is rais;ed by another thread: al-c I rue in one (II’ two bwys:

stilcl~ sizl: lhn tl1c dclFiLllT. mutexcs rct~lrris 1 Jl -inor-,y to
tlx: threads hanagcv for

l pthrcatl~cond _xvair waits * p1hrenc.l c~~nd~sign;~l
for a condirion to be raisccl \Vh2S 2 I.alldrJnlt~ SdcCtcd

Thread synchronization. M W oth- threads to 11s~:. Mutex- by smother thread thaw &arcs tlircnd that is w;,iljy 077 2

84 JANUARY1 996

www.manaraa.com

ity. Fine synchronization would i in the structure must wait while anoth- i level of parallelism in the application.
require a mutex for each variable in the i er thread updates a different variable.
structure. The disadvantage of inter- i

i You should use high degrees of syn-
In general, the level of synchro- chronization when the probability of

mediate synchronization is that a i nization - coarse, intermediate, or
!
;

thread assigned to update one variable i fine - should match the expected ;
parallelism among threads is high.
You should use decreasing levels of

condition varialk. All other St~l~ltlil~d specify that a state information on how to Jnanagxmcnt fimctions mark
threads that are waiting on pthreatl--join call M-ill tlo 311 lJroCess cancellation requests. the target &read for c~ncelia-
the Condition rariahle remain implicit pthread-detach on the ‘I’his informat.ion is classiticd tion and terminate the thread
blocked. slJeCifiCd thrcacl in addition into two Categories: at the next cancellation point.

* ~~tl~r.e~~cl..cond~l~rc,atlcast 1’0 retlirning the exit ~mcle. + ll7tcmlpt ~nahlc. ‘1% is A cancellation point is reached
wakes all the threads waiting ‘I’his niwis that only one infmJmion determines if the when a thread calls either the
on a Conclition I-ariahlc. ‘I’hc tlircad Can ioiii to a terniinat- thread should prmxss or I’thrcaLl-setas~~iccancel,
first thread to cxccutc is Ccl thread. ‘I’herrfore, you ignore cancellation reipwts.

C&xllation is enablecl ancl
I)tllrcati_testcancel, pthread-

cleterminecl hy the chreacls sh0i~ltl avoid n~uhil.Jle joins clela)~ .np, pt’hrwd-join, pthreacl-
schrcluler. 1.0 the same ~hreatl. clisabled by callinp the cm&wit, or ptlircati- cowl-

Two 0Lher Ccm~plenient- ‘1%~ ptlircail-chit function pLhrcntl_sctcancel function tirncciuait function calls.
ing fiinction calls can bc used Call tCrniinalw processing of with the C+\NCI<I,. ON/<:;\S- Threads in the asynchro-
to sy&w~ixC threads: the Calling thread. ‘I’his fimc- (XI..-OI~I~ parameter. (XX- now cancel Jnode are ternii-
pthred join and p~hrc”d wit. tion causes the thread to stqJ (Xl., IXK is the deMt nated immediately upon
The phrcatl-joirl tames the pwessing and stores the exit Miwior for all ihrcads. receipt of a ranccllation
calling thread to return the inforrnntion for other threads l /lrtwqt [ype. This rcqucst. Rccause terininalion
exit code of a specified to inspect. ‘1%~ nllocatcxl stack information dctcrtnincs IWM~ is immediate, the thread
thread in the tcrininatetl slJaCe remains in place until a thread prowsscs cancclla- should not hc IJCrfcJnning
state. ‘l’his function ~ausrs pthrcatl-detach is Lxllctl. This tion recpicsb w1iCn (:,1X- any opxiticm that w~i~lcl
the Calling l:hreRd to fiinction also polx IwiLling CM, ON is CnalJleci. \.ThCn result in an undesired state

l Keturn inirr~ccliately if cleanup routines. the inl.errulJt cnahlc niocle is when it is canr:cled. I:cJr
the t-hrcad slxcifetl is in the ~S.Al31 J-OS. threads c;iii 1x2 exam& the results are non-
terminated state. Thread cancellation. The canceled cithcr wnchronous- dcterrninistic if a thread is

0 Hlock lhc Calling thread DCE thread-ca~~ccll:~tion 1~. which is the d&iL,lt, or catlcelctl during 2 GIlI t0 tlK
until the slxCifiCd thread tcr- timction lc’ts one thread mark asynchronousI!. A thrcacl Can tTl;llloC hnction call. Results
nlinatcs. itself or anotlicr t-hreacl for allow or clisallow as\whrcJ- of this function-call tylJC are

* Fail when the specified tcunination. ‘71~e target nous Cancels 1)~ calling the not known lxcause the Can-
thread has been dCt;ldJd. thread is ;tllo\vctl to queue ~‘lllrc:ld~scl:Is~~n~c;lnccl the- cclecl thread has no way of
This is Iwause detachctl cariCellari0~~ rcqucs~s ancl exe- tion bvith t-lie (::\N(:I~:I. OK indicating that the call cithcr
threads have had their stack Cute predetrrininrd cleanup or (:.\S(:I+X. .OFF I’;wanirt-er. failed or sucreedccl.
spi~x rcturncd 1.0 the prc~c~w. rolltincs Ix43rc I-crrninating. .1 Lhrratl is in s! nchronous ‘I’hcrcfcm, threads sl10u1rl

You should Imou- that it is (Cancellation is controlled cancel motk whcncver the not- he asp-nchronousl~ cm-

likely that the runtimc by the threads interrupt-cori- :~s~~~~Chronous cancelalJilit~~ is . c&!Cl dlCJ1 they MY! Xlpir-

semiitics of this fimctioii trol functions. Threads can- turned off and the Cancel ing, holding, or updating
will Chanpc in the final vcr- cellation rcclwsls are prwxs- mode is C ZS(:EL-Oh. sharctl-data sLriJcturctl
sion of the Posit stxndard. scd according 10 dw thrcatis ‘l’lirc:id caidlation re- object-s or nhcu tliq we

<~urrent:lt;, il pthrearl..join call intwrulJtibiIity state. M ’hen
LO a t~r111i11,t-ed &rcad cnablod, catxcllatiol~5 ta ic 1

quests are n~acle I)!: calling releasing system rcsourccs.
the ~~~l~~.‘~~~‘I_~::~nccl funrti<m

returns the exit Code of the place at either interrupt-ion with the thread icleiitificr of REFERENCE
spcciiiecl thread anti more points in the thrd or when t-he thread to cancel. VC’hcn 2 I 1‘1’11%111~ Illv~wi/n;,,/i,,- l’01?‘dh~ opw

than mc threacl is allowed to a thread is asynchronously cancellation request is issuctl ,r/;q .\‘)31PI/ci. I'/ (IO i.41. lhfr 4;

ll~,l-:l~, (3 ‘I‘ccl71~ic:1I (:rmAilwc
join to a terminatccl thread.
Sewer versions of the Posis

IEEE SOFTWARE 85

www.manaraa.com

1 typedef struct C/* struct is a general mechanism to pass */
2 handle-t binding-handle; /* several parameters to a

newly *I
31 thread-args-: I* created thread*/
4 int ctr; I* counter & Number of running threads '/
5 pthread-mutex_t sync : /' mutex to update structure

members */
6 pthreabcond-tsync-cv: /* CV to signal boss thread */
7 main0 {
8 thread-args t-arg [MAX-THREADS]; I* array 0f structures */
9 pthreadpt t-id [MAX-THREADS]; /* array of thread ids 'f

10 I* get server binding info */
11 LOCK(&sync):/* first lock the mutex for the wait call */
12 for (ctr = 0; ctr < N; ctr++)I/*ctr is shared by all

threads*/
13 t-arg[ctr].binding_handle = servers[ctr];
14 t-arg[ctrl.running = &ctr;
15 pthread-create(&t-idjctr]. pthread-attr-default,
16 RPC-FUNCTION, At-argtctr]);
17 3
18 while(ctr != 0) /* wait for all threads to stop */
19 pthread~cond-wait(&sync_cv, &sync);
20 UNLOCK(&sync);

. . I* remainder of application code *I
21 RPC-FUNCTION (arg) .
22 thread-args *arg; {
23 /* make RPC call and other operations *I
24 LOCK(&sync): I* prevent other threads from decrementing *I
25 ctr -= 1; I* decrement running threads count *I
26 if(ctr == 0) I* is this the last thread 'I
27 pthread-cond-signal (&sync-cv); I* wake up main thread*/
28 UNLOCK(&sync) ;/* let other worker threads run */
29 pthread-exit(O); /* exit and terminate thread *I
30

Figwe F. Example of the synchronous boss/worker model. In this code fragment,
boss tbhvead creates n worker threads, each ofwhich will execute an RPC call to i
respective semer. The worker thread that completes the last RX’ signals a conditic
variable to infomn the boss thread that work is complete.

typedef struct I
handle-t binding-handle; I* binding handle to server *I

I thread-args;
main0 I

thread-args t-arg [MAX-THREADS]; I' array of structures *I
pthread-t t-id [MAX-THREADS] ; /* array of thread ids *I

. .
for(ctr = 0 ; ctr < N ; ctr++) { /* create N threads *I

t-arg[ctr].binding-handle = servers[ctr]:
pthread-create (ht-id[ctr]. pthread~attr-default,

RPC-FUNCTION, &t-arg[ctr]);
3
for(ctr = 0 ; ctr < N; ctr++) I

pthread-join (t-idlctr]): I* join with thread *I
3

RPC-FUNCTIKi(' arg)
thread-args *arg; C

. . I* make RPC call and other operations *I
pthread-exit(O):

1

ts ;
,n j

-
Figure 6. Alternative method ofbosslworker thread synchronization. This approach
simplifies the program by Yeducing the number of lines of code needed to synchronize
the thveads.

synchronization as the probability of ! Simultaneous multiple threads and RPCs.
parallelism within the process decreas- i Threads can be used by applications
es. Finally, you must evaluate design ! to execute RPCs in parallel even with
trade-offs between efficiency and code i one CPU: one thread can continue
complexity on a case-by-case basis. : processing while other threads are

blocked waiting for the synchronous
RPC to complete. Multiple RPCs and
I/OS can also be issued using synchro-
nous I/O multiplexing functions such
as the select function call. However,
this solution requires that the applica-
tion manage the synchronous reads
and writes and the polling of file
descriptors.

Synchronous boss/worker model. A typical
computation model for the use of
multithreading is the boss/worker
model, in which a boss thread assigns
tasks to n worker threads. The boss
may wait for a reply from one, some,
or all n workers before proceeding.
We call the first scenario described
below synchronous because the boss
thread waits for all n workers to com-
plete before continuing.

To comply with the synchroniza-
tion rules outlined earlier, we use con-
dition variables in this example -
waiting for the completion of multiple
RPCs could take a relatively long
time.

In the code fragment shown in
Figure 5, a boss thread creates n
worker threads, each of which will
execute an RPC call to its respective
server. The worker thread that com-
pletes the last RPC signals a condition
variable to inform the boss thread that
work is complete. Figure 4 shows the
definitions for the LOCK and
UNLOCK macros. The list of binding
handles for servers is contained in the
array servers: The loop index variable
CC= is known to all related threads
because it is a global variable.

This code shows several key points.
The function RPC-FUNCTION exe-
cutes simultaneously as n separate
threads. Figure 2 shows that each
instance of local variables within each
thread exists on a separate stack space.
The code segment for the function is
shared among threads. This allows
multiple simultaneous execution of
the same function in the same address
space with different arguments. When
one thread blocks on an RPC call, or

JANUARY 1996

www.manaraa.com

is preempted by the threads scheduler,
another thread-is assigned CPU time.

Each thread requires its own sepa-
rate arguments structure as declared
on line 8. Multiple structures are
required because the arguments for
each thread must persist after the
pthread-create call. The use of multiple
structures would not be necessary in a
single-threaded model.

The RPC-FUNCTION protects both
the running counter decrement in line
25 and the test for zero in line 26. This
avoids a race condition between one
thread setting the variable to zero and
another thread reading a zero value, or
two threads reading the same value and
decrementing one from the same value,
such as losing an update. The order of
lock, decrement, test, and unlock guar-
antees that the thread that set the vari-
able to zero reads the value as zero.

The program uses the pthread-cond-
wait call on line 19 and the predicate
test of ctr != o to determine when all
threads have completed. Predicate tests
are required when using the
pthread-cond-wait and the pthread-cond-
timedwait routines because the Posix
specification does not specify rigid
return criteria for these functions:
Either of these calls can return at any
time, not just when the application sig-
nals it to return. The pthread-cond-wait
and pthread-cond-timedwait calls unlock
the associated mutex before waiting for
the respective condition to be raised.
When the condition is raised, the
mutex is once again locked and control
is returned to the calling function.

This example uses a medium-level
synchronization because the mutex
sync used for the condition variable
sync-cv is also used to serialize access
to the variable CRY.

Figure 6 shows that you could also
achieve synchronization by using the
pthread-join routine to wait for each
thread to complete. This approach
simplifies the program by reducing
the number of lines of code needed to
synchronize the threads. We provided
the previous example to show the

IEEE SOFTWARE

1 struct ARGS I
2 handle-t binding-handle;
31 ~-~~~[MAx-THREADSI;
4 LOCK(done);
5 started = 0:
6 for(ctr = 0; ctr < N; ctr++) (
7 t-arg[ctr].binding-handle = servers[ctr];
8 pthread-create(&t-idtctrl, pthread-attr-default.
9 RPC~FUNCTION, &t-argfctr]);

10 I
11 started++: /* tell threads all threads started */
12 pthreaddconddbroadcast(&start-cv);/* tell threads to start
*I
13 while (first-server == NULL)
14 pthread-cond-wait(&done-cv, &done);
15 UNLOCK(done);
16 for (ctr = 0: ctr < N: ctr++) { /* clean up threads

space *I
17 pthread-cancel(t-id[ctrl 1: /* kill the threads */
18 pthread-detach(&t_id[ctrl 1: /* clean up space */
19 1
20 /* remainder of application */
21 RPC-FUNCTION (arg)
22 struct ARGS arg;
23 1
24 if(started != 1) I /* wait until all threads created */
25 LOCK(start);
26 while(started != 1)
27 pthread-cond-wait(&start-cv, &start 1:
28 UNLOCK(start);
29 I
30 pthread-setasynccancel(CANCELLON):
31 rpc-mgmt-is-server_listening(arg->binding-handle, &status);
32 LOCK(done); I* prevent other threads from

changing first-server variable */
33 if ((status == error-status-ok) && (first-server == NULL)){
34 first-server = arg->binding-handle:
35 pthread-cond-signal(&done-cv 1;
36 1
37 UNLOCK(done);
38 pthreabexit(0);
39 1

Figure 7. Example of the asynchronous boss/worker model. The code selects an
active seruey f jOm a list of potential servem in a DCE-based application by meating
a thread fey each potential server that sends a call to each respective semev: Binding
information fi-om the fiYst semen that responds is passed back to the application.

interrelationships between the various
threads’ APIs.

Asynchronous boss/worker model. Some
applications will have requirements
similar to those shown in the previous
section, except that the boss thread
only waits until the first RPC com-
pletes before resuming execution. For
example, a client can have a set of ser-
vice providers, generally of the read-
only type, that supply an identical ser-
vice such as replicated directory. In
such a case, a client can locate an active
server by either polling each, one at a
time, using the single-threaded model,
or by polling all the servers at almost
the same time using the multithreaded
model. The search in the multithread-
ed model is called off as soon as a serv-
er responds.

Figure 7 shows a code fragment that

selects an active server from a list of
potential servers in a DCE-based
application. It does this by creating a
thread for each potential server that
sends an rpc-mgmt_is-server-listening call
to each respective server. Binding
information from the server that
responds first is passed back to the
application using the first-server global
variable. The remaining RPC threads
are canceled. The servers to contact
are contained in the array servers. This
code illustrates several important
points:

l On line 30, asynchronous cdncel-
lation of each worker thread is enabled
so that each thread can be canceled by
the boss thread on line 17 after the first
RPC returns.

+ On line 27, asynchronous cancel-
lation is enabled in each worker thread

www.manaraa.com

struct THREAD-ARGS { /* global definition */
int mode; /* synchronous/asynchronous flag *!
pthread~mutex-t sync;/* mutex to prevent race condition */

pthread-condLt sync-cv: /* condition variable */
1:
BossFunction I
struct THREAD-ARGS *p; /* pointer to the thread arguments*/
struct timespec add, limit: I* structures to track time */
p = (struct THREAD-ARGS *) malloc(sizeof(THREADARGS)):
p->mode = 0; I* initialize to synchronous mode */
LOCK(h(p->sync)); I* Lock the mutex */
pthread_create(&thread_id, pthread-attr-default.

DoStudy, p); I* create new thread*/
add.tvpsec = 2: I* set number of seconds to wait */
add.tv-nsec = O;/* and zero nanoseconds *I
pthread-get-expiration_np(&add,&limit): /*expiration time *I

I* sync_cv is a globally declared condition variable */
if (pthread-cond-timedwait(&(p->sync-cv).&(p->sync) .&limit)!= 0)

p->mode = 1; I* RPC is now asynchronous ‘/
UNLOCK(&(p->sync));
return 1:

,,id DoStudy(struct THREADARGS *p) 1
. /* make RPC call and other operations*/

LOCK(&(p->sync 1):
if (p->mode == 1 1 I I* did RPC exceed time limit */

. I* do Asynchronous processing: e.g., report RPC results
in a separate widget *I

3
else I

. . I* do Synchronous processing *I
pthread-cond-signal(&sync-cv 1: I* wake boss thread*/

UNLOCKS &(p->sync) 1;
pthread-exit(O);
?

Figzye 8. Example of &nulating asynchronous RPC talk From the application’s
perspective, the RPC appears synchronous when it completes in 2 seconds and asyn-
chronow when it exceeds 2 seconds.

thread pevfbvms all the X-Yelated processing and that the remaining theads, using
the inteTfpTocess-communications pipes mechanisnz, cornrnunicate to the X event-loop
manager manager as if they we?re separate Processes.. as if they we?re separate Processes..

#define READ 0 I* Label for the read end of the pipe
#define WRITE 1 I* Label for the write end of the pipe

int gui-pipe[Zl; I* declare pipe variable ‘I
I* process initialization

pipei'ill-pipe); I*
*I

create pipe *i
XtAddInput(gui_pipe[READ]. XtInputReadMask. CB, NULL);

. . I* more main0 thread processing
XtMainLoop(); I* start the event loop 1;
exit(O); I* exit main loop of X *I
3
I* This thread will be called by the application and will run *I
I* with its own stack space. When the Get-remote-data returns *I
I* a message will be passed to the event loop manager which */
I* in turn calls the call back function to perform the
/* X related functions that are not thread-safe. 1;
Send-RPC-Thread0 { /* thread that sends RPC

. /* init code \xll 1;
Get-remote-data(); I* send the RPC call */
write(gui-pipe[WRITEl,"done", 4): I* write string to pipe 'I
pthread-exit(O): /* exit the thread *I

1 I* end of the Boss thread
I* the call back function (CB) will be called by the event 1;
I* manager and executed as part of the main0 thread *I
CB(W, c-data, cb-data) [I* CB routine to process worker info*/

I* declare variables, *I
read(gui-pipe[READl, some-line, 4); I* remove data from pipe *I

. I* Perform X related functions as main0 thread *I
1

after the pthread-cond-wait call. This
prevents the deadlock condition of
canceling a thread that is holding a
shared resource; in this case, the shared
resource is the start mutex.

+ The first-server variable updates
once and only once because of the ini-
tial-condition test done on line 33.
Without the initial-condition test, a
race condition would exist: between
other worker threads that want to
update the variable and the boss
thread, which wants to terminate the
search. Also, without the test another
worker thread can update the first-server
variable before the boss thread gets a
chance to terminate the remaining
active threads.

+ The pthread-join function cannot
be used because it is not known which
thread will complete first.

+ The code fragment in Figure 7
can easily be modified if the boss
thread must wait for completion of the
first K of n threads or the first K 6f n
threads that return with some “suc-
cess” replies. In Figure 7, K = 1.

Simulating asynchronous RPC calls. The main
form of communication among
processes in DCE is synchronous
RPC: the calling party waits until it
gets a reply from the called party or
until the RPC runtime returns a com-
munication failure. Asynchronous
RPCs can be simulated using threads
and timed condition waits. An asyn-
chronous RPC facilitates a calling
process to wait for a reply only for a
specific amount of time. If no reply is
received during that time, the calling
process proceeds with its execution. It
has the option of either receiving the
reply in background mode or ignoring
the reply.

For example, consider an applica-
tion with a graphical user interface.
We want the GUI to have a maximum
blocking time of 2 seconds. The appli-
cation’s RPC-round-trip time, the time
from the send to the receive, ranges
from 500 milliseconds to 4 seconds. To
meet the blocking requirement, a boss

JANUARY 1996

www.manaraa.com

thread creates a worker thread to make
the RPC call. In this case, the boss
thread is the main thread of the GUI.
The boss thread can use the pthread-
cond-timedwait either to wait for the
RPC to complete or for the 2-second
wait to expire. In either case, the GUI
does not block for more than 2 sec-
onds. Figure 8 shows that, from the
application’s perspective, the RPC
appears synchronous when it com-
pletes within 2 seconds and asynchro-
nous when it exceeds 2 seconds.

For readability, we omit the predi-
cate test required around the pthread-
cond-timedwait and the initialization of
the mutex and condition variables.

The arguments to the worker thread
must be allocated from the heap and
not from the stack. This is necessary
because automatic variables declared in
the boss thread would be invalid in the
worker thread once the boss times-out
and returns to its calling function.

INTEGRATING THREADS

As of X11, Release 5, X-based pro-
grams are not thread-safe. However,
you can take steps to let multiple con-
trol flows exist in a process that is not
thread-safe. You can do this by making
sure that only one thread, usually the
main thread, performs all the X-related
processing and that the remaining
threads, using the interprocess-com-
munications pipes mechanism, com-
municate to the X event-loop manager
as if they were separate processes.

Figure 9 shows a code snip that
accomplishes this. All X-related opera-
tions are performed as part of the main
thread and the RPC call is issued from
a separate thread. The RPC thread and
the main thread are connected with a
unidirectional IPC pipe. The read end
of the pipe is connected to the event-
loop manager using the XtAddInput
function call and the write end of the
pipe is recognized by the RPC thread
because it is a global variable. When
the RPC is issued, the thread sending

IEEE SOFTWARE

server~thread(client~input. server-reply)
char *client-input. *server-reply; [

int fd[Zl, n;
socketpair(AF-UNIX.
SOCK-STREAM, 0, fd);
if(fork()) I /* parent */

close(fd[ll);
write(fd[O]. client-input, strlen(client-input));
n = read (fd[Ol, server-reply. MAXLINE);
server~reply[nl = '\O': /* null terminate string

*I
return:

1
else { /* child */

close(fd LOI):
if (fd[l] != STDIN-FILENO)

dupZ(fd [Il. STDINPFILENO);
if (fd[l] != STDOUT-FILENO)

dupZ(fd [II, STDOUT-FILENO);
execlp("PROGRAMNAME". "PROGRAM-NAME", NULL):

I
I

@u-e 10. Example of porting an existing application to DCE. The code is used by
the semen thread to create a separate address space that runs the nonreentrant sem-
ev code. A biderictionalpipe does the input and output of the new process.

the call will block and the main thread
can continue to accept user input.
When the RPC completes, a string of
characters is written to the pipe. The
writing of this data will cause the X-
event-loop manager to call the call-
back routine specified during the
XtAddInput function call. This call-back
routine performs the application oper-
ations on the main thread in a thread-
safe fashion.

Porting existing applications to DCE.
Often, we must convert existing appli-
cations to DCE. The introduction of
parallelism increases the complexity of
the port because most applications are
written in the single-threaded para-
digm. To be thread-safe, the server
code must be rewritten to be re-
entrant. This rewrite converts global
and static variables to a local scope and
inserts locking and synchronization
steps where necessary to protect shared
data. Usually the client code will not
change much because of the client’s
generally low degree of parallelism.

The costs of converting a server

program to support concurrency
increase with its size and complexity.
Also, many third-party products, such
as database-management and GUI
products, do not support concurrent
processing. Therefore, you must sepa-
rate the processes that are not thread-
safe from those that are. You do this by
having the server thread execute a fork
and exec to create a new address space
to execute the non-reentrant program.
Communications between the new
process and the server thread can be
done using any interprocess-communi-
cations facilities available to the appli-
cation.

Figure 10 shows the code used by
the server thread to create a separate
address space that runs the nonreen-
trant server code. A bidirectional pipe
does the input and output to the new
process. The parent process writes the
data to the pipe and then reads the
response from the pipe. The child
process reads and writes data using
stdin and stdout.

-This implementation suffers from
the disadvantage that a separate

www.manaraa.com

process is created for each client
request. However, you must weigh the
additional use of system resources
against the costs of converting a non-
reentrant program to be thread-safe.

large data structures. A thread’s stack
space can quickly be used up by
declaring large automatic data struc-
tures or arrays in a thread.
Diminished stack space can cause the
thread to exceed its allocated stack
and cause undesirable results. To
reduce stack-space problems, memory
allocations for large objects such as
data structures and arrays should be
taken from the heap. This decreases
the chances of a thread running out of
stack space.

The heap can also run out of space
when there is either too much demand
for space or the memory is misman-
aged. However, this situation can be
easily detected and gracefully managed
by the application. The same cannot
be said for a thread running out of
stack space because a segmentation
violation signal is generated and the
program either terminates or the sig-

nal manager has no indication of
&ich thread ran out of stack space.

urrently, the absence of debug-
gers for threaded programs

poses a major problem when writing
3istributed applications. In the absence
3f a commercially supported multi-
threaded debugger, we offer some
practical advice on developing client-
server-based distributed applications:

+ First, develop the interface speci-
Fication.

+ Test and debug the server and
client as a single-threaded, single-
address-space program. The server is a
subroutine and the client is a main pro-
gram.

+ Modify this stand-alone program
as a single-threaded server program fol
all critical regions, using pthread-lock_
global-np and pthread-unlock- global_nF
constructs and a single-threaded clienl
program. Test them as client and serv-
er by linking with IDL compiler-gen-
erated stubs and header files.

+ Multithread the server and ther
the client, preferably in that order.

Breaking the development intc

ACKNOWLEDGMENTS
We thank Maurice Lampell, Gary Levin, Bob Robillard, Diane Ruddock, and John

Unger, all of Bellcore, for reviewing this document.

FERENCES
1. “Threads Extension for Portable Operating Systems,” P1003.4a, Draft 4, Technical Committee on

Operating Systems of the IEEE CS Press, Los Alamitos, Calif., 1990.
2. A.D. Birrell and B.J. Nelson, “Implementing Remote Procedure Calls,“AC:M Trims. Computer

Systems, Jan. 1984, pp. 39-59.

3. H.E. Bal et al., “‘Programming Languages for Distributed Computing System,” A C M Computing
Surveys, Mar. 1989, pp. 261-322.

4. K. Ravindran and S.T. Chanson, “Failure Transparency in Remote Procedure Calls,” IEEE Tnm.
Computers, Aug. 1989, pp. 1173-1187.

5. W. Richard Stevens, Unix Netwwk Pvqymmzing, Prentice-Hall, Englewood Cliffs, N.J., 1990.

6. ML Powell et al., “SunQS Multi-Thread Architecture,” Proc. &nix, Usenix Assoc., Berkeley, Calif.,
1991, pp. 65.79.

7. Inr&ction to DCE, Rev. 1.0, Prentice-Hall, Englewood Cliffs, N.J., 1993.

8. OSF DCE Application Development Guide, Rev. 1.0, Prentice-Hall, Englewood Cliffs, NJ., 1993.
9. B. Dasarathy, K. Khalil, and D.E. Ruddock, “Some DCE Performance Analysis Results,” Pnx. DCE

Workshop, Sprmger-Verlag, Berlin, 1993, pp. 47-62.

10. A.D. Birrell, An Introductimz to Pmgmmming with Thnds, Systems Research Center, Digital
Equipment Corp., Palo Alto, Calif., 1989.

these steps facilitates the principle of
separation of concerns. Specifically,
within an address space program-logic
concerns are isolated from distribution
concerns, which in turn are dealt with
separately from concurrency issues. +

David E. Ruddock has 11
years experience develop-
ing software solutions at
Bellcore. For the last four
years he has worked on the
design and development of
multithreaded, object-ori-
ented, distributed systems.
Before joining Bellcore, he
worked at Bell Telephone
Laboratories.

Ruddock received an M S in computer science
from the Stevens Institute of Technology and a BS
in electrical engmeering from the New Jersey
Institute of Technology.

Balakrishnan “Da?
Dasarathy has been, for
th e past five years, a con-
sulting engineer on several
Bellcore Workstation
Software Factory products
and has been applying dis-
tributed-system technolo-
gies, including DCE and
Encina,to a variety of
Bellcore products and sys-

terns in several domains. Prior to joining Bellcore,
Dasarathy worked for Concurrent Computer
Corporation and GTE Labs. He recently accepted
a position from J.P. Morgan as vice president and
technical architect to direct some of that company’s
platform work for trading applications.

Dasarathy received a PhD in computer and infor-
mation science from Ohio State University. He is a
senior member of the IEEE and a member of
ACM.

Address questions about this article to Ruddock at
Bellcore, PY4-4N308, Piscataway, NJ 08854;
der@cc.bellcore.com.

JANUARY 1996

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

